%I
%S 7,48,316,1543,6271,22116,69596,199504,528924,1310622,3062243,6794265,
%T 14399820,29296378,57452518,108986486,200594945,359164115,627034377,
%U 1069540186,1785635484,2922647926,4696491195,7419012596,11534573228
%N Number of nX3 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
%C Column 3 of A240338
%H R. H. Hardin, <a href="/A240334/b240334.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/1556755200)*n^13 + (13/479001600)*n^12 + (709/239500800)*n^11  (1097/43545600)*n^10 + (4523/2419200)*n^9  (600197/14515200)*n^8 + (21519737/21772800)*n^7  (738857411/43545600)*n^6 + (5266122739/21772800)*n^5  (29277165523/10886400)*n^4 + (450145058857/19958400)*n^3  (224785067849/1663200)*n^2 + (23586754661/45045)*n  987842 for n>12
%e Some solutions for n=4
%e ..0..3..0....0..0..0....3..0..0....0..0..0....0..0..3....0..0..3....0..0..3
%e ..0..0..3....0..0..0....0..3..0....0..3..0....3..0..3....3..0..3....0..0..3
%e ..0..3..0....0..3..3....3..3..1....0..0..3....0..3..3....3..3..3....0..3..2
%e ..3..2..2....0..0..3....3..2..2....0..0..3....3..3..2....3..3..2....3..3..3
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 04 2014
