OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Numerical Simulation and modelling of substrate assimilation by microorganisms in a turbulent flow

Linkès, Marion. Numerical Simulation and modelling of substrate assimilation by microorganisms in a turbulent flow. PhD, Institut National Polytechnique de Toulouse, 2012

(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://ethesis.inp-toulouse.fr/archive/00002128/


The scale-up of biological process is a critical issue in the bioprocess industry. When passing from a laboratory to an industrial scale, the conversion yield of substrate into biomass is often overestimated and by-products are formed. Different existing works attempt to predict the effect of mixing on biomass growth and the emergence of substrate concentration gradients at the reactor scale are a first explanation of the degraded performances. In this work the interactions between micro-mixing and substrate assimilation are addressed at the microorganism scale. A coupled transport-assimilation model is proposed for an isolated microorganism. The emergence of physical and biological regimes limiting the substrate assimilation is enlightened. An approach based on the Lagrangian tracking of microorganisms in a homogeneous isotropic turbulent field is then chosen. The effects of local concentration heterogeneities seen by microorganisms are observed at the population scale. An analytical expression is proposed for the assimilated substrate flux distribution by the microorganisms, based on the substrate concentration distribution in the fluid. From these concentrations encountered by microorganisms, we coupled a simplified metabolic model that explains the decreased specific growth rate, and the by-products formation often observed in many experiments. Finally, first results on the biological two-way coupling are proposed. The effect of microorganisms on the substrate field is characterised and a parametric study on the dynamics as well as biological parameters is realised.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Schmitz, Philippe and Fede, Pascal
Deposited On:07 May 2013 21:58

Repository Staff Only: item control page