Soulaine, Cyprien. Modélisation des écoulements dans les garnissages structurés : de l'échelle du pore à l'échelle de la colonne. PhD, Institut National Polytechnique de Toulouse, 2012
|
(Document in French)
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 2MB | |
|
(Document in French)
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 2MB |
Official URL: http://ethesis.inp-toulouse.fr/archive/00002024/
Abstract
Une colonne de séparation d'air réalise un écoulement liquide-gaz à contre courant dans une structure complexe, le garnissage. Au sein de ce garnissage, l'écoulement du liquide est du type film drainé par gravité, alors que l'écoulement du gaz est turbulent. La fonction de ces contacteurs est de développer une surface d'échange interfaciale aussi grande que possible pour favoriser le transfert d'un composé chimique de la phase liquide vers la phase vapeur (et inversement) tout en offrant des pertes de charge raisonnables. Ces dispositifs sont constitués par l'assemblage de plaques métalliques ondulées, avec ou sans perforations, où deux plaques adjacentes sont respectivement inclinées d'un angle et son opposé par rapport à l'axe de la colonne. Ce type de contacteur peut être considéré comme un milieu poreux bi-structuré avec un taux de porosité élevé. Les écoulements peuvent être décrits à deux échelles : une échelle du pore et une échelle macroscopique. A cause de cette double structuration, la modélisation macroscopique des écoulements dans ce type de structure reste un problème difficile. En particulier, les mécanismes macroscopiques qui entraînent l'étalement d'un jet dans les garnissages sont incompris. Par ailleurs, une difficulté de modélisation supplémentaire est due aux effets liés à la turbulence. Au cours de cette thèse, nous avons développé, à partir d'une méthode de changement d'échelle, un modèle complet pour simuler les écoulements et le transfert de matière dans les colonnes équipées de garnissages structurés. Notre étude se focalise sur les trois points suivants. Premièrement, nous avons obtenu, à l'aide d'une prise de moyenne volumique, une loi de Darcy-Forchheimer qui inclue les effets de la turbulence. Ensuite, pour modéliser la dispersion radiale du liquide dans la colonne, nous avons trouvé pratique de séparer la phase liquide en deux films distincts, qui s'écoulent sur chaque plaque ondulée selon des directions préférentielles différentes. Ces phases fictives ne sont pas indépendantes puisque de la matière peut passer de l'une à l'autre au niveau des points de contact entre les feuilles ondulées. Finalement, nous avons proposé un modèle macroscopique pour simuler le transport d'espèces chimiques dans un système diphasique, multiconstituants. Tous les paramètres effectifs qui apparaissent dans ce modèle sont évalués à partir de solutions analytiques ou numériques de l'écoulement à la petite échelle. Les résultats de simulation ont été comparés avec succès à des mesures expérimentales obtenues en laboratoire ou sur pilote industriel.
Item Type: | PhD Thesis |
---|---|
Uncontrolled Keywords: | |
Institution: | Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE) |
Laboratory name: | |
Research Director: | Quintard, Michel |
Statistics: | download |
Deposited On: | 04 Feb 2013 22:58 |
Repository Staff Only: item control page