OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

An ontology-based approach for detecting knowledge intensive tasks

Rath, Andreas S. and Devaurs, Didier and Lindstaedt, Stefanie N. An ontology-based approach for detecting knowledge intensive tasks. (2011) Journal of Digital Information Management, 9 (1). ISSN 0972-7272

[img]
Preview
(Document in English)

PDF (Author's version ) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
526kB

Abstract

In the context detection field, an important challenge is automatically detecting the user’s task, for providing contextualized and personalized user support. Several approaches have been proposed to perform task classification, all advocating the window title as the best discriminative feature. In this paper we present a new ontology-based task detection approach, and evaluate it against previous work. We show that knowledge intensive tasks cannot be accurately classified using only the window title. We argue that our approach allows classifying such tasks better, by providing feature combinations that can adapt to the domain and the degree of freedom in task execution.

Item Type:Article
HAL Id:hal-03469277
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE)
Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université de Toulouse > Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université de Toulouse > Université Toulouse 1 Capitole - UT1 (FRANCE)
Laboratory name:
Statistics:download
Deposited On:12 Jul 2013 09:27

Repository Staff Only: item control page