OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Multiple-scale analysis of transport phenomena in porous media with biofilms

Davit, Yohan. Multiple-scale analysis of transport phenomena in porous media with biofilms. PhD, Institut National Polytechnique de Toulouse, 2010

(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://ethesis.inp-toulouse.fr/archive/00001429/


This dissertation examines transport phenomena within porous media colonized by biofilms. These sessile communities of microbes can develop within subsurface soils or rocks, or the riverine hyporheic zone and can induce substantial modification to mass and momentum transport dynamics. Biofilms also extensively alter the chemical speciation within freshwater ecosystems, leading to the biodegradation of many pollutants. Consequently, such systems have received a considerable amount of attention from the ecological engineering point of view. Yet, research has been severely limited by our incapacity to (1) directly observe the microorganisms within real opaque porous structures and (2) assess for the complex multiple-scale behavior of the phenomena. This thesis presents theoretical and experimental breakthroughs that can be used to overcome these two difficulties. An innovative strategy, based on X-ray computed microtomography, is devised to obtain three-dimensional images of the spatial distribution of biofilms within porous structures. This topological information can be used to study the response of the biological entity to various physical, chemical and biological parameters at the pore-scale. In addition, these images are obtained from relatively large volumes and, hence, can also be used to determine the influence of biofilms on the solute transport on a larger scale. For this purpose, the boundary-value-problems that describe the pore-scale mass transport are volume averaged to obtain homogenized Darcy-scale equations. Various models, along with their domains of validity, are presented in the cases of passive and reactive transport. This thesis uses the volume averaging technique, in conjunction with spatial moments analyses, to provide a comprehensive macrotransport theory as well as a thorough study of the relationship between the different models, especially between the two-equation and one-equation models. A non-standard average plus perturbation decomposition is also presented to obtain a one-equation model in the case of multiphasic transport with linear reaction rates. Eventually, the connection between the three-dimensional images and the theoretical multiple-scale analysis is established. This thesis also briefly illustrates how the permeability can be calculated numerically by solving the so-called closure problems from the three-dimensional X-ray images.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Debenest, Gérald and Gerino, Magali
Deposited On:21 Nov 2012 12:36

Repository Staff Only: item control page