OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Numerical modelling of grinding in a stirred media mill: Hydrodynamics and collision characteristics

Gers, Romain and Climent, Éric and Legendre, Dominique and Anne-Archard, Dominique and Frances, Christine Numerical modelling of grinding in a stirred media mill: Hydrodynamics and collision characteristics. (2010) Chemical Engineering Science, 65 (6). 2052-2064. ISSN 0009-2509

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1016/j.ces.2009.12.003


Producing nanoparticles in dense suspensions can be achieved in a stirred media mill. However the mechanisms of fragmentation in the mill are still not fully understood and the process remains laborious because of the large amount of supplied energy. We focus on the numerical analysis of the local hydrodynamics in the mill. Based on the flow simulations we determine the parameters which control the efficiency of the collisions between grinding beads (impact velocities and orientation of the collisions). The suspension flow (grinding beads, particles, carrying fluid) is modelled with effective physical properties. We solve directly the continuity and Navier–Stokes equations for the equivalent fluid assuming that the flow is two-dimensional and steady. Depending on the Reynolds number and the non-Newtonian behaviour of the fluid, we found that the flow is composed of several toroidal vortices. The most energetic collisions are driven by the strong shear experienced by the suspension within the gap between the disc tip and the wall chamber.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Chemical Engineering Science website : http://www.elsevier.com/wps/find/journaldescription.cws_home/215/description#description
HAL Id:hal-03552707
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:11 Feb 2011 08:01

Repository Staff Only: item control page