OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Multilayer chromium based coatings grown by atmospheric pressure direct liquid injection CVD

Maury, Francis and Douard, Aurélia and Delclos, Sophie and Samélor, Diane and Tendero, Claire Multilayer chromium based coatings grown by atmospheric pressure direct liquid injection CVD. (2009) Surface and Coatings Technology, 204 (6-7). 983-987. ISSN 0257-8972

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1016/j.surfcoat.2009.04.020


There is a great interest for multilayer hard coatings because they exhibit enhanced properties resulting from their nanostructuration. Such coatings are frequently constituted of carbide and nitride and are generally deposited under very low pressure by plasma and PVD processes. These vacuum techniques enable the growth of heterostructures with nanometric thick individual layers and sharp interfaces, which are two requirements for advanced performances. However, both to develop more economical processes and with the goal of continuous deposition applications, the CVD processes operating under atmospheric pressure are particularly attractive. In this paper we show that the combination of pulsed direct liquid injection and the use of metalorganic precursor (DLI-MOCVD) is a promising route for the growth of nanostructured multilayer coatings under atmospheric pressure. Chromium metal as well as chromium carbide and nitrides monolithic coatings have been deposited at 773 K by this process using liquid solution of bis(benzene) chromium as Cr molecular precursor. Then, CrCx/CrN nanostructured multilayer coatings with a bilayer period as low as 50 nm have been grown. Structural characterizations and preliminary mechanical properties of these metallurgical coatings are discussed.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Surface and Coatings Technology website : http://www.sciencedirect.com/science/journal/02578972
HAL Id:hal-03566057
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Laboratory name:
Deposited On:13 Dec 2010 14:33

Repository Staff Only: item control page