OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Riverine-driven interhemispheric transport of carbon

Aumont, Olivier and Orr, James C. and Monfray, Patrick and Ludwig, Wolfgang and Amiotte Suchet, Philippe and Probst, Jean-Luc Riverine-driven interhemispheric transport of carbon. (2001) Global Biogeochemical Cycles, 1 (2). 393-405.

[img] (Document in English)

PDF (Publisher's version) - Depositor and staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://www.agu.org/pubs/crossref/2001/1999GB001238.shtml


Contreversy surrounds the role of the ocean in interhemispheric transport of carbon. On one hand, observations in the atmosphere and in the ocean both seem to imply that the preindustrial ocean transported up to 1 Pg Cyr-¹ from the Northern to the Southern Hemisphere. On the other hand, three dimensional (3-D) ocean models suggest that global interhemispheric transport of carbon is near zero. However, in this debate, there has been a general neglect of the river carbon loop. The river carbon loop includes (1) uptake of atmospheric carbon due to inorganic and organic erosion on land, (2) transport of carbon by river (3) subsequent transport of riverine carbon by the ocean, and (4) loss of riverine carbon back to the atmosphere by air-sea gas exchange. Although carbon fluxes from rivers are small compared to natural fluxes, they have the potential to contribute substantially to the net air-sea fluxes of CO2. For insignt into this dilemma, we coupled carbon fluxes from a global model of continental erosion to a 3-D global carbon-cycle model of the ocean. With rivers, total southward interhemispheric transport by the ocean increases from 0.1 to 0.35±0.08 Pg Cyr¯¹, in agreement with oceanographic observations. Resulting air-sea fluxes of riverine carbon and uptake of CO2 by land erosion were installed as boundary conditions in a 3-D atmospheric model. The assymetry in these fluxes drives a preindustrial atmospheric gradient of CO2 at the surface of ­-0.6±0.1 µatm for the North Pole minus the South Pole and longitudinal variations that exceed 0.5 µatm. Conversely, the gradient for Mauna Loa minus South Pole is only -0.2±0.1 µatm, much less than the -0.8 µatm gradient extrapolated linearly from historical atmospheric CO2 measurements from the same two sites. The difference may be explained by the role of the terrestrial biosphere. Regardless, the river loop produces large gradients both meridionally and zonally. Acounting for the river carbon loop changes current estimates of the regional distribution of sources and sinks of CO2, particularly concerning partitioning between natural and anthropogenic processes. ­­­

Item Type:Article
Additional Information:Thanks to American Geophysical Union editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Global Biogeochemical Cycles: http://www.agu.org/pubs/crossref/2001/1999GB001238.shtml
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Institut National de la Recherche Agronomique - INRA (FRANCE)
French research institutions > Institut de Recherche pour le Développement - IRD (FRANCE)
Other partners > Université Pierre et Marie Curie, Paris 6 - UPMC (FRANCE)
French research institutions > Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > Université de Versailles Saint-Quentin-en-Yvelines -UVSQ (FRANCE)
Laboratory name:
Deposited On:02 Apr 2010 14:27

Repository Staff Only: item control page