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Abstract

Fruit ripening is a sophisticatedly orchestrated developmental process, unique to plants, that

results in major physiological and metabolic changes, ultimately leading to fruit decay and seed

dispersal. Because of their strong impact on fruit nutritional and sensory qualities, the ripening-

associated changes have been a matter of sustained investigation aiming at unravelling the

molecular and genetic basis of fruit ripening. Tomato rapidly emerged as the model of choice for

fleshy fruit research and a wealth of genetic resources and genomics tools have been developed,

providing new entries into the regulatory mechanisms involved in the triggering and coordination

of the ripening process. Some of the key components participating in the control of tomato fruit

ripening have been uncovered, but our knowledge of the network of signalling pathways engaged in

this complex developmental process remains fragmentary. This review highlights the main

advances and emphasizes issues still to be addressed using the rapidly developing ‘omics’

approaches.
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Introduction

Fruit ripening is the ultimate developmental stage of the

reproductive organ of higher plants from which the

matured seeds are released for reproduction. In that

regard, the primary role of the fruit is to provide a sui-

table environment for seed development and maturation.

Fruit development is divided into three main phases

starting with fruit set and early growth, characterized by

active cell division. During the second phase, the fruit

undergoes a steady increase in size, mostly through cell

expansion. The last phase corresponds to fruit ripening

and is characterized by dramatic changes in colour, tex-

ture and taste, which contribute to the build-up of the

fruit sensory quality. Once maturation is reached, the fruit

structure is continued to alter until complete decay, thus

leading to seed dispersal. All biochemical, molecular,

physiological and structural modifications associated with

ripening are tightly orchestrated at the genetic level,

enabling the control of appearance, aroma, flavour and

texture so as to render the fruit appealing to a variety of

seed-dispersing organisms including humans.

Given its social and economic importance, man-made

selection tended to divert the fruit function from repro-

duction to consumption and for that reason ripening has

been and continues to be extensively studied at the phy-

siological, biochemical and genetic levels. Since the early

1980s, tomato has been recognized as a model system for

studying the molecular basis of fleshy fruit development

and unravelling the role of ethylene in controlling the

ripening of climacteric fruit. The adaptation of a range of

technological tools (e.g. microarray) and the generation

of new biological resources on the tomato (e.g. EST

database, TILLING resources, genetic and physical maps)

have led to a step forward on the understanding of the

molecular mechanisms underlying the ripening process.

Tomato is an attractive model species because of the

availability of a wide range of well-characterized sponta-

neous or induced mutants; ease of genetic transformation

and manipulation and the existence of a dwarf variety
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(MicroTom) that has a short life cycle and can be grown at

high density. The status of the model system gained by the

tomato has been also fostered by the genetic proximity to

other species from the Solanaceae family such as potato,

pepper and eggplant, all presenting important agronomical

and economical interest. Taking advantage of the relatively

small size of the tomato genome, major initiatives were

launched by the Solanaceae Genome Network (SGN:

http://www.sgn.cornell.edu/) an international consortium

that includes a genome sequencing project and the gen-

eration of resources for high-throughput reverse genetics

and transcriptomics [1]. Fruit research and particularly

ripening research have benefited greatly from the devel-

opment of these modern tools. Major progress has been

made in identifying important genes that give new leads

towards understanding the molecular control of the fruit

ripening process.

So far, our understanding of the regulatory events

controlling fruit ripening have greatly benefited from the

availability of a variety of natural ripening mutants such

as rin (ripening inhibitor), affected in the MADS-box [2];

nor (non-ripening), altered in a transcription factor of yet

unknown function [3]; Nr (Never ripe), mutated in the

ethylene receptor [4]; Cnr (colourless non-ripening), altered

in the expression of Squamosa Promoter Binding Protein

[5] and Gr (green ripe), affected in one component of the

ethylene transduction pathway [6]. The present review

will compile the most recent advances made in deci-

phering the molecular mechanisms regulating tomato fruit

ripening. It will also emphasize new perspectives now

possible in fruit research.

Biochemical Changes Associated with Ripening:

The Fruit Ripening Syndrome

The majority of fruit quality attributes are elaborated

during the ripening process. These traits correspond to

visual, chemical and structural modifications that ulti-

mately make fruit edible and attractive for consumption.

Because these changes are crucial for the final sensory and

nutritional qualities of the fruit, they have received great

attention from scientists and breeders and studies have

been directed toward a better understanding of their

physiological, molecular and genetic basis. Among all the

aspects contributing to fruit quality, changes in texture,

aroma, volatile production and pigment accumulation

have been most extensively studied in the tomato. Efforts

in this area have first concentrated on the isolation and

characterization of genes and enzymes that participate

directly in the above mentioned biochemical and physio-

logical changes. Thereafter, attempts were made to

unravel the regulatory mechanisms controlling these

complex processes. Studies of secondary metabolites

accumulating during tomato fruit ripening were further

prompted by health claims concerning these compounds,

even though direct and clear evidence of their positive

impact on human health is still lacking.

Shedding Light on Fruit Colour Development

Biosynthesis of a large variety of secondary metabolites is

one of the most remarkable features of ripe fruit, and in

the case of tomato, red pigment accumulation is emble-

matical of the ripening process. Carotenoid pigments,

including lycopene, are key components of the sensory

and nutritional quality of both fresh ripe and processed

tomato fruit. The characteristic colour of ripe tomato

fruit is caused by lycopene and b-carotene, which accu-

mulate concomitantly with the decrease in chlorophyll

content during the transition from chloroplast to chro-

moplast [7].

Carotenoid biosynthesis is a complex pathway dis-

tributed in two main steps and involving a large number of

enzymes. In the early step, DOXP synthase (1-deoxy-

D-xylulose-5-phosphate) catalyses the condensation of

hydroxyethyl thiamine into 1-deoxy-D-xylulose 5-phos-

phate [8, 9]. This step, leading to the isopentenyl pyro-

phosphate (IPP), is also known as the non-mevalonate

pathway by opposition to the mevalonic acid-dependent

pathway. The later step is the isoprenoid pathway in

which phytoene synthase (PSY) catalyses the condensa-

tion of two molecules of geranylgeranyl pyrophosphate

(GGPP) to form phytoene [10], the immediate precursor

of lycopene (Figure 1). Lycopene accumulation is corre-

lated with the up-regulation of isoprenoid genes, notably

DOXP synthase, suggesting a crucial role for the non-

mevalonate pathway in lycopene biosynthesis during fruit

ripening [11]. Phytoene synthase (PSY1) and phytoene de-

saturase (PDS) genes, which are also up-regulated during

ripening [7, 12–14], encode enzymes that catalyse phy-

toene formation and desaturation, respectively, leading

to lycopene formation. Concomitantly, lycopene cyclase

genes (LCY-b and LCY-e) are strongly down-regulated

during ripening [15, 16], thus preventing lycopene cycli-

zation and so leading to its accumulation. It has been

demonstrated that the inhibition of lycopene cyclization

induced an increase in PDS and PSY-1 expression, sug-

gesting the existence of an autocatalytic synthesis of

lycopene [13, 14].

Accumulation of lycopene is stimulated by red light

treatment and is under the dependence of fruit localized

phytochrome [17]. The red/far red (R/FR) regulation of

the PSY activity is not reflected in PSY1 transcript level

indicating that the light-regulation of PSY occurs at the

post-translational level [18]. These data suggest that light

regulates at least some components of the ripening pro-

cess, yet the corresponding signalling mechanisms are still

unknown.

While the role of ethylene in controlling the ripening-

associated colour development is well established, some

data also suggest that auxin signalling is involved in the
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regulation of pigment accumulation. Tomato fruit under-

expressing DR12, a gene encoding a transcriptional

regulator of auxin responses (corresponding to auxin

response factor 4, ARF4), show dark green and blotchy

ripening phenotypes [19]. Because similar phenotypes

have been described for transgenic lines over-producing

cytokinins [20], it cannot be excluded that ARF4 may

function as a link between auxin and cytokinins signalling

pathways.

On the other hand, ABAAQ1 also emerged as an important

hormone involved in fruit ripening. A tomato ABA-

deficient mutant (hp3) was shown to display higher sto-

rage capacity of carotenoid [21] and more recently ABA

treatment was reported to promote tomato fruit ripen-

ing, as well as ethylene biosynthesis via the induction

of ACS2 and ACO1 genes, whereas fluridone, the ABA

synthetic inhibitor, delays ripening [22].

The Concerted Contribution of Genes with

Diverse Functions to Fruit Softening

Texture change and softening are among the most striking

features of fruit ripening and it has long been known

that this phenomenon is caused by cell wall disassembly

and reorganization. The primary cell wall is constituted

of different polymers including cellulose matrix glucan,

composed of neutral sugars, pectins and structural

proteins [23]. During the ripening process, the pectin-rich

middle lamella of the cell wall is modified and partially

hydrolysed, and the structural change of this pectin gel is

responsible for the loss of cohesion between cells and, at

least partly, for the softening of the ripe fruit (Figure 2).

Polygalacturonase (PG) catalyses the hydrolytic clea-

vage of a-(1-4)-galacturonan linkages and is responsible

for the change in pectin structure associated with the

ripening of many fruits [24]. In ripening-impaired mutants

rin, nor and Nr, the softening is dramatically reduced and

the level of PG transcripts is lower than wild-type [4, 25,

26]. Consistent with the putative role of PG in the soft-

ening process, different cis-regulatory regions allowing the

expression in the outer and inner pericarp of ripe tomato

fruit have been identified in the PG promoter [27].

Moreover, PG transcripts were shown to be induced by

very low levels of ethylene concentration [28]. Pectin

de-methylation and de-esterification by pectin methyl-

esterase (PME) is a prerequisite for subsequent pectin de-

polymerization and solubilization by PG (Figure 2). Since,

the pattern of PME proteins accumulation does not cor-

relate with the pattern of transcript accumulation; it is

likely that fruit softening is also regulated at the post-

translational level [29–31]. Moreover, transgenic tomato

plants under-expressing a Rab11, a GTPase involved in the

control of cellular protein trafficking, shows reduced level

of PG activity and decreased fruit softening, suggesting

that regulation of the trafficking of cell-wall-modifying

enzymes by GTPase represents an additional point of

control of texture change during fruit ripening [32].

At the beginning of the ripening process, the breakdown

of polymeric galactose into free molecules of galactose

is catalysed by b-galactosidase [33]. Purified tomato

b-galactosidases can be classified into three forms display-

ing complementary activities during fruit development and

ripening [34]. Forms I and III are highly active in green fruit

but not at the red stage, whereas activity of form II is absent

in green fruit and increases during ripening [34–36].

Tomato b–galactosidases are encoded by a gene family

comprising at least seven members that show specific ex-

pression pattern throughout fruit development [33, 35, 37].

TBG4 is up-regulated during fruit ripening and the corre-

sponding transcripts are not detected in ripening-impaired

mutants nor, rin andNr [33]. It was postulated that TBG4may

be regulated by ethylene and the reduction of its activity

accounts for up to 40% decrease in fruit softening [38].

Expansin, another cell-wall protein, is responsible for

the disruption of the hydrogen bonds between cellulose

IPP

GGPP

Phytoene

Phytofluene

9,15, 9′-tricis- -Carotene

7,9,9′-tricis-neurosporene

Lycopene

Cyclic carotenoids

( -carotene, -carotene, -carotene, -carotene)

Phytoene synthase, PSY

Phytoene desaturase, PDS

-Carotene desaturase, ZDS

Lycopene cyclase, LCY

Light

Phytoene desaturase, PDS

9, 9′-dicis- -Carotene

-Carotene desaturase, ZDS

7,9,7′,9′-tetracis-lycopene (prolycopene) 

Light

Carotene isomerase, CRTISO

Figure 1 Simplified scheme of carotenoid biosynthesis in
tomato fruit. IPP, the starting point of carotenoid biosynthe-
sis, is produced via the plastidial mevalonate-independent
pathway. IPP leads to GGPP, which is directly converted to
phytoene by PSY. A cascade of desaturation reactions is
then necessary to create the characteristic carotenoid
chromophore including PDS and z-carotene desaturase
(ZDS), ultimately to produce prolycopene. The last step
of lycopene synthesis in fruit tissue involves carotene
isomerase (CRTISO), while in photosynthetic tissues light
and chlorophyll catalyse this conversion. Cyclization of
lycopene by lycopene cyclase (LCY) leads to the formation
of carotene. Red pigment accumulation in ripe fruit is
mainly the result of lycopene accumulation resulting from
restriction of lycopene cyclization
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Julien Pirrello, Farid Regad, Alain Latché, Jean-Claude Pech and Mondher Bouzayen 3



microfibrils and polysaccharides matrix [39]. During

development and ripening of tomato fruit, at least six

expansin genes show overlapping expression patterns

with EXP1 transcript being the most abundant in ripening

tomato fruit. Expression of EXP1 is ethylene-regulated

and its transcripts accumulate specifically in the fruit

and peaks at breaker stage [40–42]. Interestingly, down-

regulation of EXP1 results in decreased softening,

whereas ectopic expression enhances fruit softening [43].

Xyloglucan endotransglycosylase (XET), also called

endo-xyloglucan transferase (EXGT), is another potential

actor of fruit softening and texture change [23]. The

activity of XET enzymes, which cleave xyloglucan, is par-

ticularly high in growing tomato fruit, then declines at early

ripening and finally increases slightly at late ripening [44–

46]. In the rin mutant, XET activity is reduced compared

with wild-type tomato, suggesting that the expression of

XET genes is ripening-related and is possibly regulated by

ethylene in climacteric fruit [23, 47]. It was reported that

over-expression of EXGT1 results in increased final fruit

size and that both mRNA abundance of EXGT1 and fruit

size were inversely correlated with sugar concentration.

This finding highlights the important role of EXGT1 in

final fruit size and in sugar concentration [23] but the

involvement of XET in fruit softening remains unclear. Even

though rin, nor, Nr and Cnr mutations have been described

to affect fruit softening, little is known about the direct

regulators of genes encoding cell-wall-modifying enzymes.

It was, however, reported that under-expression of the

auxin transcription factor ARF4 results in altered fruit

texture with enhanced firmness [19]. This phenotype was

shown to result from alteration of pectin fine structure

associated with changes in tissue architecture [48].

Whereas cell wall metabolism associated with fruit

softening is well documented [23], the mechanism that

links cell-wall-related genes to ripening-associated chan-

ges in fruit texture remains to be elucidated. Recently, the

understanding of fruit softening seems to be following

new leads that point at the fruit cuticle as a major actor in

controlling fruit texture.

Cuticle, the Other Component of Tomato

Fruit Softening

The importance of cuticle composition and architecture in

maintaining fruit texture emerged from recent findings as

the missing piece of the softening process. Plant cuticle is

Pectin De-esterification Solubilization

PME PG

Cellulose

XET

EXPHemicellulose (Xylogucan)

Primary cell wall

Plasma membrane

Figure 2 Schematic representation of the spatial arrangement of the primary cell wall components and the major sites
leading to cell wall loosening. The primary cell wall is made up of a complex network of carbohydrates (mainly cellulose,
hemicellulose and pectin) in which proteins such as expansin and extensin are embedded. The cellulosemicrofibrils are linked
via hemicellulosic tethers to form the cellulose–hemicellulose network, which is embedded in the pectin matrix. The most
common hemicellulose in the primary cell wall is xyloglucan. During fruit ripening, texture change and softening are associated
with cell wall disassembly involving several enzymes. Pectin de-methylation and de-esterification by PME is required for
subsequent pectin de-polymerization and solubilization by PG. Expansin is another cell wall protein responsible for the
disruption of the hydrogen bonds between cellulose microfibrils and polysaccharides matrix. XET enzymes cleave xyloglucan
and their activity is very high in growing tomato fruit, declines at early ripening and then increases slightly at late ripening
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the first protective barrier against pathogen attacks, UV

radiation and mechanical damages [49–51]. It also plays an

important role in limiting transpirational water loss from

the primary plant surface [52]. The cuticular layer is

composed of a polymer matrix (cutin) and associated

solvent-soluble lipids (cuticular waxes). The cuticle can be

divided into two spatially separated layers: the epicuticular

waxes coating the surface and the intracuticular waxes

embedded in the cutin matrix. Epicuticular film is charac-

terized by the presence of very long-chain aliphatic

molecules, while the intracuticular compartment contains

in addition large quantities of penta cyclic triterpenoids

[53]. Wax composition consists of homologous series of

very-long-chain aliphatic molecules, including alkanoic

acids, alkanols, aldheydes, alkanes and esters, and cyclic

compounds such as triterpenoids and phenylpropanoids

[54, 55]. The delayed fruit deterioration (DFD) cultivar

produces fruits exhibiting normal ripening but minimal

softening. DFD fruits lose less water by transpiration than

WTAQ2 and display higher cell turgor. It was reported that

the difference in water transpiration is probably the result

of a higher quantity of wax and cutin that contribute to

waterproofing of the cuticle [56]. These data suggest an

important role for the cuticle in the ripening-associated

softening of tomato fruit [56] and give new perspectives

on the understanding of novel aspects underlying the

ripening and post-harvest-associated modifications of

fruit texture. A direct relationship between cuticular

transpiration barrier properties and distinct chemical

modifications in cuticular wax composition during the

course of tomato fruit development was demonstrated

for the cer6 mutant [57]. Indeed, a deficiency in this

b-ketoacyl-coenzyme A synthase is responsible for the

simultaneously occurring increase of water permeance

and modification in the proportion of n-alkanes and tri-

terpenoids composition. More recently, a combined ana-

lysis of tomato surface fruit tissue components and

transcriptomic patterns of expression, allowed the iden-

tification of up to 100 candidate genes potentially involved

in the cuticle formation including those belonging to a

subclass of the ERF family, enoyl-CoA reductase, acyl-

CoA synthetase and 3-ketoacyl-CoA synthase (CER6)

[58]. Complexity of softening and texture modification

during tomato ripening suggests different regulation levels:

chemical, mechanical and genetic. All these control points

target traits of interest for agronomist in order to modify

the softening, the texture and the juiciness.

Regulation of Volatile Formation during

Tomato Fruit Ripening

Though it is obvious that aroma volatiles contribute to the

overall sensory quality of fruit, the most prevalent com-

pounds that are essential for typical aroma of ripe tomato

fruit are still evasive. Around 400 volatile compounds have

been identified in ripe tomato but only a few have been

considered to play a major role in tomato flavour [59].

Tomato volatile compounds are usually grouped into five

main classes [59–67] based on their metabolic origin

(Table 1). The lipid-derived volatiles represent the bulk of

aroma volatiles in tomato and are generated by the

lipoxygenase (LOX) pathway. This pathway appears to be

located in the plastid since a natural mutation in a chloro-

plastic w-3-fatty acid desaturase gene that resulted in a

deficiency in linolenic acid caused profound changes in the

volatile profile of tomato [61]. The pathway comprises the

action of phospholipase, lipoxygenase, hydroxyperoxide

Table 1 Metabolic origin of main volatile compounds involved in tomato fruit flavour

Pathway Component Enzymes References

Fatty acids oxidation cis73-hexenal Phospholipase [59–64]
Hexanal Lipoxygenase
1-penten-3-one Hydroperoxyde lyase
Trans-2-hexenal Alcohol dehydrogenase
Trans-2-pentenal
pentenol
1-penten-3-ol
trans-2-heptenal
2-isobutylthiazole

Amino acids 2-phenylethanol Amino acid decarboxylases [65]
3-methyl-butanol (AADC1A, AADC1B, AADC2)
1-nitro-3-methyl-butane
2+3-methyl-butanal

Carotenoid related 6-methyl-5-hepten-2-one Carotenoid cleavage [66]
Geranyl-acetone dioxygenase 1
Pseudoionone
b-ionone

Terpene pathway Geranial Linalool synthase [67]
Linalool
Neral

Shikimate pathway Methyl salicylate Unknown [60]
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lyase and alcohol dehydrogenase. Notably, ripe tomatoes

evolve very few esters, so that the involvement of alcohol

acyltransferases downstream in the pathway is secondary,

in contrast to many other fruit types [68]. These enzymes

are encoded by multigene families and only in a few cases

has the direct involvement of members of these families

in aroma volatiles production been ascertained by reverse

genetics approaches (for phospholipase PLD-a [62],

lipoxygenase LOXC [63] and alcohol dehydrogenase,

ADH2 [64]). However, down-regulation of only one of the

five LOX of tomato, LOXC, did not result a significant

reduction in the level of flavour volatiles such as hexanal,

hexenal and hexenol [63].

The amino acid-derived volatiles are also important

components of the aroma of tomato fruit and the iden-

tification of the gene encoding the enzyme responsible

for the decarboxylation of phenylalanine represents a

significant step forward towards the understanding of this

metabolic pathway [65]. Down-regulation of this gene via

antisense strategy led to reduced emissions of phenyl-

acetaldehyde and phenylethanol in transgenic tomatoes.

Conversely, its overexpression in tomato increased up to

10-fold the quantities of phenylethanol, phenylacetalde-

hyde, phenylacetonitrile and 1-nitro-2-phenylethane. This

capacity to modulate the levels of phenylethanol and

phenylacetaldehyde is important since these compounds

can exert a dual effect: at low concentrations, phenyl-

ethanol and phenylacetaldehyde are associated with

pleasant sweet flowery notes, while at high concentra-

tions the pungent aroma of phenylacetaldehyde has a

nauseating and unpleasant odour [69].

Carotenoid-derived volatiles are present at relatively

low levels but play an important role in tomato flavour.

The biosynthetic route was discovered by Simkin et al.

[66] who demonstrated, by both heterologous expression

in Escherichia coli and down-regulation in tomato plants,

that the carotenoid cleavage dioxygenase 1 genes con-

tribute to the formation of b-ionone, pseudoionone and

geranylacetone.

Tomato produces low amounts of terpene volatiles.

Expressing the Clarkia breweri linalool synthase gene under

a fruit-specific promoter in the tomato was reported to

result in a strong stimulation of the production of linalool

and of 8-hydroxy-linalool, probably as a result of the

presence in the tomato of a P450 enzyme capable of

hydroxylating linalool [67]. These data bring new leads

towards the modification of tomato fruit flavour through

biotechnological approaches.

It is also important to mention that in ripe tomato

many volatile compounds are present in a conjugated

form, linked to glycosides to form non-volatile precursors

that could be as important in quantity as the free fraction

[70]. The mechanism governing, in vivo, the release of

volatiles from the bound fraction is not very well known.

It is supposed to occur by the action of endogenous

b-glucosidases, preferentially upon cell disruption. Indeed,

the production of aroma volatiles increases upon tissue

disruption owing to tissue and cell structure destruction,

which brings together enzymes and substrates that are

normally sequestrated in different sub-cellular compart-

ments. Glycoside derivatives are synthesized by glycosyl-

transferases (GTs). GTs are encoded by a very large gene

family but so far, data on which GT genes are specifically

involved in the formation of conjugated volatiles are not

available.

Ethylene, a Key Hormone for Tomato

Fruit Ripening

The major advances gained to date in understanding the

molecular mechanisms underlying the ripening process

have been achieved by the combined use of modern

molecular genetics and genomic approaches. While fruit

development from fruit set through ripening involves a

number of plant hormones [71, 72], the phytohormone

ethylene was first identified as the key regulator of tomato

fruit ripening. Ethylene is a simple gaseous molecule that

plays a key role in many processes, including seed germi-

nation, leaf senescence, abscission, responses to stresses

and fruit ripening. Ethylene biosynthesis in higher plants

originates from S-adenosyl-methionine (SAM) and com-

prises two steps catalysed by ACC synthase (ACS) and

ACC oxidase (ACO), the latter converting 1-aminocy-

clopropane-1-carboxylic acid (ACC) into ethylene [73]

(Figure 3) [74]. Genes encoding these two enzymes

undergo important regulation during the process of fruit

ripening. Fruits can be divided into two broad groups,

known as climacteric and non-climacteric, based on their

type of ripening mechanisms [75]. In contrast to non-

climacteric fruit type, climacteric fruits present a peak in

respiration and a concomitant burst of ethylene during

maturation. This category of fruit includes tomato, banana,

pears and apple; all of them need an ethylene burst for

normal ripening. Corroboratively, in ethylene-suppressed

transgenic plants there is no or very slow ripening [76–78].

Two distinct systems of ethylene biosynthesis have been

proposed to take place during fruit development, system 1

being characterized by auto-inhibitory ethylene produc-

tion, whereas system 2 is autocatalytic [79]. System 1 of

ethylene production relies on the expression of ACS1A and

ACS6 [80] and is responsible for producing basal ethylene

levels that are detected in all vegetative tissues and in pre-

climacteric stages of climacteric fruit development as well

as in non-climacteric fruit. During climacteric burst there is

an autocatalytic production of ethylene depending on

system 2, which is initiated and maintained by the ethylene-

dependent ACS2 [80]. In tomato, ACO, which catalyses the

last step of ethylene biosynthesis (Figure 3), is encoded by a

small gene family comprising four members ACO1–4 [81–

83]. It has been shown that ACO transcripts accumulate

during ripening of climacteric fruits [76, 81], with ACO1

being the most abundantly expressed during fruit ripen-

ing and more particularly after breaker stage [84, 85].
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Ripening of non-climacteric fruits such as pineapple,

lemon and cherry is generally considered as an ethylene-

independent process, although some recent results sug-

gest a role of ethylene in ripening this type of fruit [86, 87].

Ethylene Signalling and the Control of

Ripening Time

The molecular dissection of ethylene transduction and

response pathway has been initially performed with the

model plant Arabidopsis using genetic screens based on

the well-documented triple response phenotype of

ethylene-treated aetiolated seedlings [88–90]. These

remarkable studies led to the identification of the first

plant hormone receptor [91]. Subsequent studies revealed

a simple linear signalling pathway, where ethylene

is perceived by a family of membrane-bound receptors

[4, 92–94] bearing similarity to two-component histidine

protein kinase receptors. Ethylene binds to the N-terminal

membrane-spanning domain of the receptor in the pre-

sence of a copper cofactor provided by the RAN1 copper

transporter [95]. Genetically, it has been shown that the

receptors are negative regulators of ethylene signalling

[96, 97]. That is, in the absence of ethylene, the ETR1 and

related protein receptors are active and can repress

downstream ethylene response through the activation of

CTR1 a Raf-like protein kinase, which also functions as a

negative regulator of ethylene signalling [98]. Once ethyl-

ene binds to the receptor, ETR1 can no longer activate

CTR1 and repress ethylene responses. CTR1 acts as a

negative regulator of ethylene response via repressing the

positive regulator EIN2 [99], which further relays the

ethylene signal to the transcription factors EIN3 and

EILs. These latter, activate ethylene response factor 1

(ERF1) the primary target transcription factor involved in

the activation of secondary target ethylene-responsive

genes such as PDF1.2 [100]. The latest advances have

implemented the linear model of the ethylene-signalling

pathway into a more complex signalling system that
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Figure 3 Schematic model depicting the ethylene-dependent and ethylene-independent components of the control of fruit
ripening. Autocatalytic ethylene production associated with fruit ripening probably involves RIN MADs-box induced ACC
synthase (ACS) for the production of ACC, the ethylene precursor used as substrate by ACC oxidase (ACO). Ethylene is
perceived by a family of membrane-bound receptors including NR, levels of which are controlled by protein degradation. In
the absence of ethylene binding, active form of the receptors acts as negative regulators of ethylene signalling. GR, a RTE-
like protein, affects fruit ripening through interaction with the ethylene receptor. In the absence of ethylene, CTR1 is in its
active form and negatively regulates EIN2, a positive regulator of EIN3. Subsequently, EIN3 activates ethylene responses
by binding to the EIN3-binding site (PERE) in the promoter of ERF genes. CTR1 was also reported to inactivate MKK9-
MPK3/6 in Arabidopsis but no similar data are available for the tomato [74]. ERFs encode transcriptional regulators that bind
the GCC-box in the promoter of ethylene and ripening-regulated genes. EIN3 stability is controlled by proteasome-mediated
degradation involving EBF1/2. Repression of EBF1 and EBF2 transcription is mediated by an exoribonuclease encoded by
EIN5. RIN, NOR and CNR are ripening switches acting upstream of autocatalytic ethylene. Ripening-related genes are also
controlled by other signalling pathways including auxin via ARF4 and light via HP1 and HP2. Arrows and blunt end arrows
indicate positive and negative regulation, respectively. Stars indicate cis-elements recognized by specific transcription
factors (TFs). Dashed lines indicate putative or unknown link between two components
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includes multiple pathways of regulators, feedback mech-

anisms and protein turnover. Importantly, it has been

shown recently that ethylene receptor degradation con-

trols the timing of ripening in tomato fruit [101] and that

ethylene receptors ETR4 and ETR6 are rapidly degraded in

the presence of ethylene via a proteasome-dependent

pathway. Degradation of either of these two receptors

results in early fruit ripening, suggesting that the levels of

receptor in fruit tissue could be a key factor controlling the

onset of ripening. It was hence suggested that receptor

degradation might serve as a mechanism in fruit to measure

cumulative exposure to ethylene and thus to control the

timing of ripening.

The negative regulator of ethylene transduction path-

way CTR1, is transcriptionally up-regulated during fruit

ripening concomitantly with the increase in ethylene pro-

duction. The accumulation of CTR1 transcripts during fruit

ripening may therefore play a role in preventing ethylene

overproduction and ripening from proceeding too rapidly

[102]. The CTR family in tomato constitutes four genes,

shown to be differently regulated during ripening and in

response to ethylene [103]. Among these, CTR1 is the

most induced during fruit ripening and upon ethylene

treatment [103]. Another regulatory step of ethylene

responses takes place at the level of EIN3 and EIL1 tran-

scription factors (Figure 3). Recently, it has been shown

that EIN3 and EIL1 are constitutively expressed in Arabi-

dopsis and their levels controlled at the post-translational

level through protein degradation via the 26S proteasome

[104, 105]. In particular, EIN3 is degraded via two F-box

proteins, EBF1 and EBF2 [106] and the expression of

these two last-named genes is regulated at the post-

transcriptional level via a degradation pathway controlled

by the exoribonuclease EIN5 [107]. EIN5 is supposed to

antagonize the negative feedback regulation on EIN3 by

controlling EBF1 and EBF2 mRNA turnover (Figure 3). In

addition, it was reported that EIN3 stability is controlled

by glucose through hexokinase activity [108], suggesting

that metabolite accumulation may also contribute to

regulate ethylene responses and hence the ripening

process. The presence of orthologues of EBF1, EBF2,

EIN5 and HXK1 (GenBank accession number: AC

respectively ABB89717, ABC24972, ACA05276 and

AAY69841) in tomato suggests that similar mechanisms

of post-transcriptional and post-translational regulation

of the ethylene signalling pathway are conserved in this

species and may be operating during fruit ripening.

Regulation of Ripening-related Genes via

Recruitment of Selected Ethylene-responsive

Genes

Ethylene is known to regulate processes as diverse as

stress responses and ripening, yet the molecular mech-

anisms by which this hormone selects the appropriate

target genes to orchestrate in a specific manner either of

the two processes remain unclear. In its downstream part,

the ethylene transduction pathway leads to a transcrip-

tional cascade starting with EIN3 and EIL (EIN3-like)

shown to bind the primary ethylene response element

(PERE) present in the promoter of a target ERF [100]

(Figure 3). ERFs, formerly called ethylene response ele-

ment binding proteins (EREBPs), are the last known

components of the ethylene transduction pathway.

Because they are encoded by one of the largest plant

multigene family of transcription factors, ERFs are there-

fore well suited to channel the ethylene signalling towards

a wide diversity of responses through recruiting either

ripening or stress-related genes depending on the devel-

opmental situation and the tissue taken into considera-

tion. While ERFs are known to regulate target genes

harbouring the well-conserved GCC-box-containing

cis-regulatory element [109], some ERFs can also bind

other types of cis-elements, such as the one described in

the E4 promoter [110]. Interestingly, it was reported that

ERFs exhibit differential affinity towards the GCC-box

depending on the nucleotide environment surrounding

this canonical motif [111] (Pirrello et al., manuscript in

preparation). Strikingly, so far only one ERF has been

identified as direct regulator of ripening-associated genes

via binding a cis-element present in the promoter of

E4 [110], a ripening-regulated gene [112] encoding pro-

teins of unknown function. This cis-element is necessary

but not sufficient to confer ethylene responsiveness to

these genes since substitution of this ethylene response

element abolished their ability to respond to ethylene,

while its fusion to a 35S minimal promoter failed to confer

ethylene response [113]. Noteworthy, the expression of

E4 is under ethylene control, whereas E8, another

ripening-associated gene, is regulated by both ethylene

and other unidentified fruit-ripening signals [114]. The

case of E8 and E4 genes well exemplifies the complexity of

the transcriptional regulations operating during fruit

ripening [109]. All together these studies indicate that

transcription regulation of fruit ripening-related genes

involves a variety of cis-regulatory and trans-acting factors,

however, to date consensus fruit-specific cis-elements

have not been identified. It is likely that other hormones

are also actively involved in the regulation of fruit ripen-

ing-related genes and that cross-talk between different

signalling pathways is essential for fine tuning of this

important developmental process. In keeping with this

hypothesis, analysis of ripening-related gene expression in

natural mutants or in transgenic plants reveals two types

of gene regulation, ethylene-dependent and ethylene-

independent pathways [25, 115, 116].

Genetic Control and Emerging Epigenetic

Regulation of Fruit Ripening

The advances made in understanding the molecular

mechanisms underlying sillique dehiscence in Arabidopsis
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identified a series of key actors. However, this has not so

far benefited the understanding of their role in fleshy fruit

ripening. Instead, most of our understanding of the genetic

control of tomato ripening was gained from the analysis of

ripening-impaired natural mutants such as rin, nor, Nr, Cnr,

Gr, hp-1 and hp-2 (high-pigment). Among these mutants the

most commonly used, both by scientists and breeders,

are rin and nor. RIN encodes a MADS-box protein of the

SEPELATTA clade [2, 117] and loss-of-function mutation

in this gene results in dramatic delay of ripening. It was

shown that RIN factor acts upstream and independently

from the autocatalytic ethylene production and it was

suggested that RIN could be a universal ripening regulator

common to both climacteric and non-climacteric fruit

[118]. Recent studies indicated that RIN protein is capable

of binding the ACS2 promoter and may therefore directly

regulate the expression of this ACS gene in situ [119]. The

non-ripening (nor) mutant displays similar phenotypes to

those exhibited by rin and the NOR gene also encodes a

putative transcription factor but with uncharacterized

function. It was shown that the expression of the E8 gene

is partially active in the rin mutant, suggesting that the

expression of ripening-associated genes may be controlled

by an ethylene-independent mechanism. More recently,

another gene encoding a tomato HD-Zip homoeobox gene

(HB1) transcription factor was also reported to result in

ripening-related phenotypes in transgenic lines [120].

Tomato mutants altered in components of ethylene sig-

nalling also exhibit strong ripening-impaired phenotypes.

Among these, Nr is mutated in the ethylene receptor gene

expressed in fruit and Gr is altered in the gene encoding a

putative membrane-bound protein with potential copper-

binding activity. The Gr mutant is ripening-impaired, dis-

playing reduced lycopene content and enhanced fruit

firmness. Responses to ethylene are also affected in the

Gr mutant as exemplified by the altered expression of

ethylene-regulated genes such as E4, E8, PSY1 and PG;

however, ripening-associated ethylene production is

unaffected [6]. The hp mutants were reported to exhibit

higher fruit pigmentation because of enhanced accumula-

tion of carotenoids and flavonoids in ripe fruit. HP-1 gene

encodes the tomato orthologue of the Arabidopsis UV-

damaged DNA-binding protein 1 (DDB1) [121, 122],

known to contribute to the initial UV damage response by

stimulating nucleotide excision repair [123], while HP-2

gene encodes the tomato orthologue of Arabidopsis

nuclear protein DEETIOLATED (DET1), a negative regu-

lator of photomorphogenesis [124, 125].

Epigenetic markers such as cytosine methylation alter

chromatin organization, thus affecting the regulation of

gene expression. The elucidation of the Cnr locus pro-

vided new insight into the epigenetic regulation of fruit

ripening and revealed the essential role for this mech-

anism in controlling this developmental process [5].

Accordingly, a recent study demonstrated a link between

tissue-dependent methylation and endoreduplication in-

volved in the last step of fruit development [126]. Cnr is an

epigenetic mutation that alters the methylation status of

the promoter of an SPB-box (SQUAMOSA Promoter

Binding Protein) gene. It was suggested that CNR encoded

protein may target TDR4 [127], an orthologue of the

Arabidopsis FRUITFULL MADS-box gene involved in silli-

que shattering [128]. These new findings demonstrate

that heritable fruit quality traits can be modified without

modification of the DNA sequence, and hence open new

prospects for engineering fruit ripening.

Regulation of gene expression at the post-

transcriptional level via small interfering RNAs (siRNAs)

is an emerging theme in plant biology. However, direct

evidence for siRNA-mediated regulation of develop-

mental processes has been demonstrated so far only in

Arabidopsis. While examples of siRNA regulation in

tomato are still lacking, the identification of microRNAs

that could target genes involved in fruit ripening was

reported recently [129, 130], supporting the idea that this

mechanism of post-transcriptional regulation is potentially

important throughout fruit development and ripening.

This new developing field of research is likely to shed new

light on the regulation of the ripening process and to

provide new leads for improving fruit quality traits.

Future Trends: From Fruit Physiology

to Fruitomics

The advent of the nascent genomics revolution and the

availability of new tools and biological resources on the

tomato model species are already impacting fruit research

and will, in the near future, further boost our knowledge

of the regulatory mechanisms governing the process of

fruit development and ripening. An international genome

sequencing initiative targeting the gene-rich space of the

tomato genome is underway [131, 132] and the expected

outcome in terms of sequence information and genome

organization will be implemented by several drafts from

tomato eco-sequencing programmes, which will ultimately

benefit to the research on fleshy fruit ripening. In keeping

with this trend, the development of high throughput trans-

criptomics methodologies is yielding increasing amount of

expression data and the accumulating microarrays studies

are expected to provide new insights into the molecular

basis of fruit development and ripening [133–135]. The

high flow discovery of new genes arising from these

transcriptomic approaches creates a need for high-speed

functional identification methods of candidate genes. The

construction of central TILLING (Targeting Induced Local

Lesions IN Genomes) facilities for the tomato will address

this issue by creating high-throughput reverse genetics

technologies publicly accessible to plant biologists and

breeders interested in the tomato and other genetically

related Solanaceae species (http://www.evry.inra.fr/public/

index.html and http://www.competences.u-bordeaux1.

fr/fiche_structure.php?struct=TILLING-Tomate). Proteo-

mics approaches have also been launched and the most
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Julien Pirrello, Farid Regad, Alain Latché, Jean-Claude Pech and Mondher Bouzayen 9



promising programmes are dedicated to the analysis of

the plastidial proteome. Given that the large majority of

the plastid-resident proteins are encoded by the nuclear

genome, the sequencing of the plastidial genome is poorly

informative regarding the proteins that mediate chromo-

plastic functions. Because of the prominent contribution

of the chromoplast to the build up of sensory quality traits

of ripe fruit, it is expected that a comprehensive analysis

of the chromoplast proteome will give important leads

towards understanding the mechanism of chloroplast

to chromoplast transition characteristic of tomato fruit

ripening [136]. Following the same line, metabolomics

approaches have been developed in recent years aiming at

establishing comprehensive primary and secondary meta-

bolic profiling of tomato fruit in contrasted genotypes and

various stages of fruit development [137].

The combining of high-throughput data generated by

‘omics’ approaches will provide important clues towards a

better understanding of the molecular events underlying

the ripening process and will open new avenues to un-

cover the signalling pathways orchestrating this genetically

programmed developmental process. Indeed, some major

questions related to the biology of fruit ripening still

remain without clear answers, among which the following

are the most important: (i) what is the molecular mech-

anism underlying the attainment of competence to ripen

or, in other words, by what mechanism does ethylene gain

its ability to selectively induce the ripening-associated

genes at certain stage of fruit development but not earlier,

(ii) what are the hormones that act in concert with

ethylene to trigger and drive the ripening process, (iii)

what signals trigger the ripening of non-climacteric fruit

and are they shared between the two types of fruit, (iv) to

which extend the regulation of fruit ripening involves

siRNAs, and (v) do the variety of primary and secondary

metabolites accumulating during fruit ripening play a role

in regulating the ripening process through a feedback

mechanism?
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