OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Optimal design of eco-efficient chemical processes

Azzaro-Pantel, Catherine and Domenech, Serge and Ouattara, Adama and Pibouleau, Luc and Yao Kouassi, Benjamin Optimal design of eco-efficient chemical processes. (2009) In: 2nd International Congress on Green Process Engineering, 2nd European Process Intensification Conference, 14 June 2009 - 17 June 2009 (Venise, Italy).

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Technico-economic considerations have for long been taken into account as decisional criteria in the conceptual phase for new and retrofitted chemical processes. While the emphasis on economic aspect remains strong, another priority in evaluating chemical processes is the environment. Such problems, leading to multiple and most often conflicting goals, must be solved within the framework of complex multiobjective optimization. This study addresses the problem of analyzing the various objectives involved in eco-efficient processes, meaning that ecological and economic considerations are taken into account simultaneously at the preliminary design phase of chemical processes. The multiobjective methodology is performed by genetic algorithms implemented in the so-called MULTIGEN library, particularly well-suited to multiobjective optimization of mixed integer nonlinear programming problems. The trade-off between economic and environmental objectives is illustrated through the generation of Pareto curves. The methodology will be illustrated by the classical example of Williams and Otto Chemical Plant, which is often considered as a test bench for representing complex nonlinear programming problems incorporating the main features of a chemical processing plant, in the dedicated literature of process design. The original William and Otto Chemical Plant problem will be revisited here in a multiobjective mode. A key point will be the treatment of equality constraints involved in the material balances, which are often considered as one of the most critical phases in genetic algorithm implementation. This step was carried out by solving the set of nonlinear equations by a classical Newton-Rapshon method implemented within the Matlab solver. We will highlight the insight the design engineer can gain using the multiobjective synthesis procedure and demonstrate the computational efficiency achieved by tackling simultaneously environmental and economic issues.

Item Type:Conference or Workshop Item (Paper)
Additional Information:This article is publied in the CDrom : Proceedings 14-17 June 2009,Venice-Italy.
HAL Id:hal-04107359
Audience (conference):International conference proceedings
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Other partners > Institut National Polytechnique Felix Houphouët-Boigny - INP-HB (IVORY COAST)
Laboratory name:
Laboratoire de Génie Chimique - LGC (Toulouse, France) - Procédés Systèmes Industriels (PSI)
Deposited On:08 Jul 2009 06:20

Repository Staff Only: item control page