OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

Statler, Thomas S. and Raducan, Sabina D. and Barnouin, Olivier S. and DeCoster, Mallory E. and Chesley, Steven R. and Barbee, Brent and Agrusa, Harrison F. and Cambioni, Saverio and Cheng, Andrew F. and Dotto, Elisabetta and Eggl, Siegfried and Fahnestock, Eugene G. and Ferrari, Fabio and Graninger, Dawn and Herique, Alain and Herreros, Isabel and Hirabayashi, Masatoshi and Ivanovski, Stavro and Jutzi, Martin and Karatekin, Özgür and Lucchetti, Alice and Luther, Robert and Makadia, Rahil and Marzari, Francesco and Michel, Patrick and Murdoch, Naomi and Nakano, Ryota and Ormö, Jens and Pajola, Maurizio and Rivkin, Andrew S. and Rossi, Alessandro and Sánchez, Paul and Schwartz, Stephen R. and Soldini, Stefania and Souami, Damya and Stickle, Angela and Tortora, Paolo and Trigo-Rodríguez, Josep M. and Venditti, Flaviane and Vincent, Jean-Baptiste and Wünnemann, Kai After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission. (2022) The Planetary Science Journal, 3 (10). 244. ISSN 2632-3338

[img] (Document in English)

PDF (Publisher's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
5MB

Official URL: https://doi.org/10.3847/PSJ/ac94c1

Abstract

After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission Thomas S. Statler 1 , Sabina D. Raducan 2 , Olivier S. Barnouin 3 , Mallory E. DeCoster 3 , Steven R. Chesley 4 , Brent Barbee 5 , Harrison F. Agrusa 6 , Saverio Cambioni 7 , Andrew F. Cheng 3 , Elisabetta Dotto 8 , Siegfried Eggl9 , Eugene G. Fahnestock 4 , Fabio Ferrari 2 , Dawn Graninger 3 , Alain Herique 10 , Isabel Herreros 11 , Masatoshi Hirabayashi 12,13 , Stavro Ivanovski 14 , Martin Jutzi 2 , Özgür Karatekin 15 , Alice Lucchetti 16 , Robert Luther 17 , Rahil Makadia 9 , Francesco Marzari 18 , Patrick Michel 19 , Naomi Murdoch 20 , Ryota Nakano13 , Jens Ormö 11 , Maurizio Pajola 16 , Andrew S. Rivkin3 , Alessandro Rossi 21 , Paul Sánchez 22 , Stephen R. Schwartz 23 , Stefania Soldini 24 , Damya Souami 19 , Angela Stickle 3 , Paolo Tortora 25 , Josep M. Trigo-Rodríguez 26,27 , Flaviane Venditti 28 , Jean-Baptiste Vincent 29 , and Kai Wünnemann 17,30 1 Planetary Defense Coordination Office and Planetary Science Division, NASA Headquarters, 300 Hidden Figures Way SW, Washington, DC 20546, USA Thomas.S.Statler@nasa.gov 2 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, 3012, Switzerland 3 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 7 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA 8 INAF-Osservatorio Astronomico di Roma, Rome, I-00078, Italy 9 Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 10 Univ. Grenoble Alpes, CNRS, CNES, IPAG, F-38000 Grenoble, France 11 Centro de Astrobiología CSIC-INTA, Instituto Nacional de Técnica Aeroespacial, E-28850 Torrejón de Ardoz, Spain 12 Department of Geosciences, Auburn University, Auburn, AL 36849, USA 13 Department of Aerospace Engineering, Auburn University, Auburn, AL 36849, USA 14 INAF- Osservatorio Astronomico di Trieste, Trieste I-34143, Italy 15 Royal Observatory of Belgium, Belgium 16 INAF-Astronomical Observatory of Padova, Padova I-35122, Italy 17 Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Germany 18 University of Padova, Padova, Italy 19 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice F-06304, France 20 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France 21 IFAC-CNR, Sesto Fiorentino I-50019, Italy 22 Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO 80303, USA 23 Planetary Science Institute, Tucson, AZ 85719, USA 24 Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK 25 Alma Mater Studiorum—Università di Bologna, Department of Industrial Engineering, Interdepartmental Center for Industrial Research in Aerospace, Via Fontanelle 40—Forlì (FC)—I-47121, Italy 26 Institute of Space Sciences (ICE, CSIC), Cerdanyola del Vallès, E-08193 Barcelona, Catalonia, Spain 27 Institut d’Estudis Espacials de Catalunya (IEEC), Ed. Nexus, E-08034 Barcelona, Catalonia, Spain 28 Arecibo Observatory, University of Central Florida, HC-3 Box 53995, Arecibo, PR 00612, USA 29 German Aerospace Center, DLR Berlin, Germany 30 Freie Universität Berlin, Germany Received 2022 August 9; revised 2022 September 18; accepted 2022 September 22; published 2022 October 28 Abstract NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction- specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near- surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction.

Item Type:Article
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Laboratory name:
Statistics:download
Deposited On:08 Feb 2023 09:11

Repository Staff Only: item control page