OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Beyond surface nanoindentation: Combining static and dynamic nanoindentation to assess intrinsic mechanical properties of chemical vapor deposition amorphous silicon oxide (SiOx) and silicon oxycarbide (SiOxCy) thin films

Puyo, Maxime and Topka, Konstantina Christina and Diallo, Babacar and Laloo, Raphaël and Genevois, Cécile and Florian, Pierre and Sauvage, Thierry and Samélor, Diane and Senocq, François and Vergnes, Hugues and Caussat, Brigitte and Menu, Marie-Joëlle and Pellerin, Nadia and Vahlas, Constantin and Turq, Viviane Beyond surface nanoindentation: Combining static and dynamic nanoindentation to assess intrinsic mechanical properties of chemical vapor deposition amorphous silicon oxide (SiOx) and silicon oxycarbide (SiOxCy) thin films. (2021) Thin Solid Films, 735. 1-8. ISSN 0040-6090

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: https://doi.org/10.1016/j.tsf.2021.138844

Abstract

Nanoindentation is a well-known technique to assess the mechanical properties of bulk materials and films. Despite that, nanoindentation of thin films is not straightforward, given that the measured properties are composite information from a film/substrate system and depend on the indentation depth. By using dynamic indentation experiments and analytical or empirical models, we assessed the intrinsic film properties of chemical vapor deposited silicon oxide (SiOx) and silicon oxycarbide (SiOxCy) thin films with thicknesses ranging from 60 to 700 nm. In this work, the Bec rheological model and several mixing laws were reviewed. Measured Young modulus appeared to be affected by the substrate properties more than hardness: for the thinnest films, moduli were measured at ca. 90 GPa whereas intrinsic moduli were calculated at ca. 50 GPa. Using calculated intrinsic film modulus and hardness, it was possible to establish correlations between these properties, the chemical composition and the structural organization of the films.

Item Type:Article
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > Université d'Orléans (FRANCE)
Laboratory name:
Funders:
Agence Nationale de la Recherche - ANR
Statistics:download
Deposited On:15 Oct 2021 10:12

Repository Staff Only: item control page