OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Fast short-circuit protection for SiC MOSFETs in extreme short-circuit conditions by integrated functions in CMOS-ASIC technology

Barazi, Yazan. Fast short-circuit protection for SiC MOSFETs in extreme short-circuit conditions by integrated functions in CMOS-ASIC technology. PhD, Génie Électrique, Institut National Polytechnique de Toulouse, 2020

(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Wide bandgap power transistors such as SiC MOSFETs and HEMTs GaN push furthermore the classical compromises in power electronics. Briefly, significant gains have been demonstrated: better efficiency, coupled with an increase in power densities offered by the increase in switching frequency. HV SiC MOSFETs have specific features such as a low short-circuit SC withstand time capability compared to Si IGBTs and thinner gate oxide, and a high gate-to-source switching control voltage. The negative bias on the gate at the off-state creates additional stress which reduces the reliability of the SiC MOSFET. The high positive bias on the gate causes a large drain saturation current in the event of a SC. Thus, this technology gives rise to specific needs for ultrafast monitoring and protection. For this reason, the work of this thesis focuses on two studies to overcome these constraints, with the objective of reaching a good performance compromise between “CMS/ASIC-CMOS technological integration level-speed–robustness”. The first one, gathers a set of new solutions allowing a detection of the SC on the switching cycle, based on a conventional switch control architecture with two voltage levels. The second study is more exploratory and is based on a new gate-driver architecture, called multi-level, with low stress level for the SiC MOSFET while maintaining dynamic performances. The manuscript covers firstly the SiC MOSFET environment, (characterization and properties of SC behavior by simulation using PLECS and LTSpice software) and covers secondly a bibliographical study on the Gate drivers. And last, an in-depth study was carried out on SC type I & II (hard switch fault) (Fault under Load) and their respective detection circuits. A test bench, previously carried out in the laboratory, was used to complete and validate the analysis-simulation study and to prepare test stimuli for the design stage of new solutions. Inspired by the Gate charge method that appeared for Si IGBTs and evoked for SiC MOSFETs, this method has therefore been the subject of design, dimensioning and prototyping work, as a reference. This reference allows an HSF type detection in less than 200ns under 400V with 1.2kV components ranging from 80 to 120mOhm. Regarding new rapid and integrated detection methods, the work of this thesis focuses particularly on the design of a CMOS ASIC circuit. For this, the design of an adapted gate driver is essential. An ASIC is designed in X-Fab XT-0.18 SOICMOS technology under Cadence, and then packaged and assembled on a PCB. The PCB is designed for test needs and adaptable to the main bench. The design of the gate driver considered many functions (SC detection, SSD, segmented buffer, an "AMC", ...). From the SC detection point of view, the new integrated monitoring functions concern the VGS time derivative method which is based on a detection by an RC analog shunt circuit on the plateau sequence with two approaches: the first approach is based on a dip detection, i.e. the presence or not of the Miller plateau. The second approach is based on slope detection, i.e. the variability of the input capacitance of the power transistor under SC-HSF compared to normal operation. These methods are compared in the third chapter of the thesis, and demonstrate fault detection times between 40ns and 80ns, and preliminary robustness studies and critical cases are presented. A second new method is partially integrated in the ASIC, was designed. This method is not developed in the manuscript for valorization purposes. In addition to the main study, an exploratory study has focused on a modular architecture for close control at several bias voltage levels taking advantage of SOI isolation and low voltage CMOS transistors to drive SiC MOSFETs and improve their reliability through active and dynamic multi-level selection of switching sequences and on/off states.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Rouger, Nicolas and Richardeau, Frédéric
Deposited On:13 Apr 2021 12:56

Repository Staff Only: item control page