OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Influence of step duration in fractionated Py-GC/MS of lignocellulosic biomass

González Martínez, María and Ohra-aho, Taina and da Silva Perez, Denilson and Tamminen, Tarja and Dupont, Capucine Influence of step duration in fractionated Py-GC/MS of lignocellulosic biomass. (2019) Journal of Analytical and Applied Pyrolysis, 137. 195-202. ISSN 0165-2370

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: https://doi.org/10.1016/j.jaap.2018.11.026


Fractionated pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC/MS) appears as an interesting analytical tool for elucidating lignocellulosic biomass structure, as it allows the progressive release of chemical fragments representative of biomass macromolecular composition. In this paper the effect of fractionated pyrolysis time (from 5 s to 300 s) on the degradation of lignin and carbohydrates from beech wood was studied at temperatures between 250 °C and 500 °C. Fractionated Py-GC/MS showed that the release temperature of the volatile degradation products varied between the volatile species detected. In addition, the step duration time changed the thermal degradation behavior of lignocellulosic components. Shortening the constant step duration time from 300 s to 5 s shifted the maximum weight loss to the higher temperatures. The result was opposite at long step duration times. Time optimization at each pyrolysis temperature (250 °C, 40 s; 300 °C, 30 s; 350 °C, 25 s; 370 °C, 20 s; 400 °C, 15 s; 450 °C, 10 s; 500 °C, 5 s) enhanced the yield of both lignin and carbohydrate volatile pyrolysis degradation products. In addition, two multiple temperature maxima were shown for some lignin and carbohydrate derivatives. This behavior may be due to the two different pathways of formation and macromolecular origins of compounds in beech wood. At optimized conditions lignin derivatives having a 3-carbon side chain substituent had a maximum at lower temperature than that of lignin derivatives with a 1-carbon side chain substituent. That phenomenon follows the order of primary and secondary pyrolysis reactions. Similar behaviors were observed among the degradation products of hemicelluloses and cellulose. Degradation products of hemicelluloses were mainly released at lower temperatures than those of cellulose derivatives, which illustrates the lower thermal stability of hemicelluloses compared to cellulose.

Item Type:Article
HAL Id:hal-03111444
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Other partners > Université Grenoble Alpes - UGA (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > IHE Delft Institute for Water Education (NETHERLANDS)
Other partners > VTT Technical Research Centre of Finland Ltd (FINLAND)
Laboratory name:
European Commission
Deposited On:15 Jan 2021 11:03

Repository Staff Only: item control page