OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Bioceramic powders for bone regeneration modified by high-pressure CO2 process

Aubry, Clémentine and Camy, Séverine and Combes, Christèle and Marsan, Olivier and Canceill, Thibault and Cazalbou, Sophie Bioceramic powders for bone regeneration modified by high-pressure CO2 process. (2020) Journal of Materials Science, 56 (4). 3387-3403. ISSN 0022-2461

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Official URL: https://doi.org/10.1007/s10853-020-04476-y

Abstract

Non-stoichiometric nanocrystalline apatites present enhanced bioactivity compared to stoichiometric hydroxyapatite. The purpose of this work was to modify the calcium phosphates (CaP) generally used to prepare bioactive ceramics in the aim of obtaining a biomimetic apatite powder. Hydroxyapatite (HA) powder, amorphous tricalcium phosphate (amTCP) powder and a blend of these two were modified by means of an innovative, simple, “green” carbonation process, involving water and high-pressure CO2 (80 bar). This process induced a modification of the CaP, which is sensitive to the environment in which it is located and, in particular, to the pH variations that occur during the treatment phase (decrease in the pH) and during the degassing phase (return to neutral pH). FTIR and Raman spectroscopy, XRD and SEM analyses showed that, depending on the type of initial CaP powder, high-pressure CO2 treatment led to the formation of different types of calcium phosphate phases. This process allowed partial dissolution of the initial powder, mainly of TCP when present, and precipitation of a new CaP phase. HA and HA/amTCP powders were transformed into a mixture of OCP and immature carbonated apatite (PCCA) phases, including OCP maturation/transformation into PCCA. In the case of amTCP powder, a DCPD phase was also present due to the high TCP solubility and an earlier precipitation during the degassing step. This work shows the great potential of such an innovative low-temperature and high-pressure process to transform HA, HA/TCP and TCP powder into bioactive biphasic ceramics composed of OCP and PCCA similar to bone mineral.

Item Type:Article
HAL Id:hal-03097305
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Funders:
Région Occitanie (France)
Statistics:download
Deposited On:05 Jan 2021 11:08

Repository Staff Only: item control page