OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Prediction of soot particles in Gas Turbine Combustors using Large Eddy Simulation

Gallen, Lucien. Prediction of soot particles in Gas Turbine Combustors using Large Eddy Simulation. PhD, Energétique et Transferts, Institut National Polytechnique de Toulouse, 2020

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Expected stringent legislation on particulate matter (PM) emission by gas turbine combustors is currently motivating considerable efforts to be better understand, model and predict soot formation. This complex phenomenon is very difficult to study in detail with experiment, and numerical simulation is an essential complementary tool. Considering that the chemistry of soot particles strongly depends on their size, the numerical prediction of soot formation requires the description of their size distribution. To do so, either Eulerian methods (sectional or moments) or stochastic Lagrangian approaches are reported in the literature. In the present work, a far more simple semi-deterministic Lagrangian approach is proposed. An accurate description of the gaseous phase including first Polycyclic Aromatic Hydrocarbons is also developed as a necessary input to detail soot model. The combination of reduced chemistries with Lagrangian soot tracking is applied to canonical laminar sooting flames, later to two complex configurations representative of an aeronautical combustors. The first one is the FIRST configuration, a gaseous confined pressurized swirled flame studied experimentally at DLR. Impact of precursors species and radiative transfers through the resolution of Radiative Transfer Equation (RTE). Good predictions are obtained compared to experiments for predicted temperature and soot volume fraction. The second target configuration is the UTIAS Jet A-1 burner and corresponds to a confined turbulent spray flame burning aviation jet fuel A-1 studied experimentally at UTIAS Toronto. LES of this configuration provides a qualitative and quantitative understanding of soot evolution in turbulent spray flames. Numerical predicted soot volume fraction using Lagrangian soot tracking and an ARC mechanism including pyrolysis method is compared to experimental measurements. Results show the ability of the proposed methodology relying on ARC chemistry for Jet A-1 including pyrolysis method and Lagrangian soot tracking, to predict accurately soot compared to available measurements.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Cuenot, Bénédicte and Riber, Eleonore
Deposited On:04 Nov 2020 09:09

Repository Staff Only: item control page