Gouvert, Olivier and Oberlin, Thomas
and Févotte, Cédric
Negative Binomial Matrix Factorization.
(2020)
IEEE Signal Processing Letters, 27. 815-819. ISSN 1070-9908
|
(Document in English)
PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 369kB |
Official URL: https://doi.org/10.1109/LSP.2020.2991613
Abstract
We introduce negative binomial matrix factoriza- tion (NBMF), a matrix factorization technique specially designed for analyzing over-dispersed count data. It can be viewed as an extension of Poisson factorization (PF) perturbed by a multiplicative term which models exposure. This term brings a degree of freedom for controlling the dispersion, making NBMF more robust to outliers. We describe a majorization-minimization (MM) algorithm for a maximum likelihood estimation of the parameters. We provide results on a recommendation task and demonstrate the ability of NBMF to efficiently exploit raw data.
Item Type: | Article |
---|---|
Audience (journal): | International peer-reviewed journal |
Uncontrolled Keywords: | |
Institution: | French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE) Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE) Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE) Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE) Université de Toulouse > Université Toulouse - Jean Jaurès - UT2J (FRANCE) Université de Toulouse > Université Toulouse 1 Capitole - UT1 (FRANCE) |
Laboratory name: | |
Statistics: | download |
Deposited On: | 27 Jul 2020 08:20 |
Repository Staff Only: item control page