OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Calorimetry and FTIR reveal the ability of URG7 protein to modify the aggregation state of both cell lysate and amylogenic α-synuclein

Dandurand, Jany and Ostuni, Angela and Francesca Armentano, Maria and Antonietta Crudele, Maria and Dolce, Vincenza and Marra, Federica and Samouillan, Valérie and Bisaccia, Faustino Calorimetry and FTIR reveal the ability of URG7 protein to modify the aggregation state of both cell lysate and amylogenic α-synuclein. (2020) AIMS Biophysics, 7 (3). 189-203. ISSN 2377-9098

(Document in English)

PDF (Publisher's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: https://doi.org/10.3934/biophy.2020015


Differential scanning calorimetry and FITR analyses allowed to investigate the role of URG7 (up-regulated gene clone 7) protein involved in the development of hepatocellular carcinoma induced by hepatitis B virus infection, on the physical structure both of lysates of human hepatoblastoma cells (HepG2) stressed with tunicamycin and α-synuclein, one of the proteins associated with neurogenerative diseases. The protein-water interfacial region was identified and correlated with protein structure. DSC results confirm through the interfacial water behavior that URG7 is able to act in two ways: it maintains the interfacial water stability and controls the mobile fraction level, thereby the flexibility and the protein folding. The mobile water phase increases strongly for cells exposed to α-synuclein, demonstrating an important influence on water hydration. FTIR results evidenced an increase of about 30% of cross β structures in cells exposed to α-synuclein, associated with aggregated proteins. In stress conditions, URG7 was able to maintain the same fraction of mobile water as untreated cells. URG7 was able to restore the water reorientation ability around the complex lysate system and reduced abnormal protein folding.

Item Type:Article
HAL Id:hal-02906200
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > Università della Calabria (ITALY)
Other partners > Università degli Studi della Basilicata - UNIBAS (ITALY)
Laboratory name:
Deposited On:24 Jul 2020 10:38

Repository Staff Only: item control page