OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold

Das, Pritam and Remigy, Jean-Christophe and Lahitte, Jean-François and van der Meer, Andries D. and Garmy-Susini, Barbara and Coetsier, Clémence and Desclaux, Sandrine and Bacchin, Patrice Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. (2020) Materials Science and Engineering C, 107. 110257. ISSN 0928-4931

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: https://doi.org/10.1016/j.msec.2019.110257

Abstract

Polymer blend made from poly( - caprolactone)/chitosan (PCL/CHT) offers interesting opportunities for biological applications. The paper presents a new way to fabricate PCL/CHT double-porosity (macrovoids with interconnected microporosity) membrane materials from a chemical optimization of the solvent and non-solvent phases and from a modified phase inversion technique. By varying the PCL/CHT proportion, it is shown that it is possible to improve the chemical and physical properties of the CHT carbohydrate polymer. The PCL/CHT membranes are fully characterized in term of physico-chemical properties (ATR-FTIR, XRD and DSC) to understand the miscibility of the two-polymer blend. Morphological characterization by SEM shows that by increasing CHT wt% in the blend, the size of the macrovoids was increasing. Rapid enzymatic degradation of PCL from all the blend was found by using lipase (from P. cepacia). The mechanisms at the origin of the morphological structuration of the material is also discussed. To test the ability to operate these materials as small diameter vascular scaffolds, cell culture with human umbilical vein endothelial cells (HUVECs) were carried out on the membrane and the results analyzed with laser scanning confocal microscopy (LSCM). Data suggest that the blend membrane with higher concentration of CHT polymer wt% have suitable properties that promote high number of cells on the surface by maintaining cellular cytoskeleton integrity within 3 days. The blend membrane with a double porous morphology could be potentially applicable in future for small diameter vascular graft application. The surface macrovoids (20–90 μm) could be useful for three-dimensional cellular adhesion and proliferation and interconnected microporous spongy network (7–20 μm) is expected to transfer essential nutrients, oxygen, growth factor between the macrovoids and the supernatant.

Item Type:Article
HAL Id:hal-02747030
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
French research institutions > Institut National de la Santé et de la Recherche Médicale - INSERM (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > University of Twente (NETHERLANDS)
Laboratory name:
Statistics:download
Deposited On:03 Jun 2020 09:01

Repository Staff Only: item control page