OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Controlled synthesis of Ru nanoparticle covalent assemblies and their catalytic application

Min, Yuanyuan. Controlled synthesis of Ru nanoparticle covalent assemblies and their catalytic application. PhD, Chimie Organométallique et de Coordination, Institut National Polytechnique de Toulouse, 2020

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
13MB

Abstract

This research work focuses on the preparation of Ru nanoparticle (NP) covalent assemblies stabilized by different functional molecules, and the study of structure/activity relationships for catalytic hydrogenation reactions. Chapter 1 reviews the metal NP covalent assemblies according to the synthesis strategies and their application in catalysis. Chapter 2 described the preparation of three-dimension (3D) Ru NP covalent assemblies characterized by: i) well-defined nanometricsized Ru NP stabilized by functionalized adamantane, bis-adamantane and diamantane ligands, and ii) a tunable interparticle distance. The coordination chemistry with amine and carboxylic acid ligands towards the Ru NP surface was investigated. In the case of carboxylic acid ligands it was shown that Ru species formed during the NP assembly are able to partially decarbonylate carboxylic acid ligands at room temperature. The mechanism of this reaction was elucidated by DFT. Chapter 3 detailed the use of other molecular building blocks for Ru NP assembly formation. We showed that the use of tricarboxylic-hexyloxy triphenylene ligand leads to the formation of twodimensional (2D) Ru NP assemblies with homogeneous interparticle distance and NP size. Additionally, 3D Ru NP assemblies were prepared with 9, 10-dicarboxylic anthracene and a hexaadduct functionalized C60 fullerene. In Chapter 4 we studied the catalytic performances of the Ru NP networks in various reactions. All these materials constitute an interesting set to investigate the structural and electronic effects in heterogeneous catalysis. In the selective hydrogenation of phenyl acetylene, the assemblies are active, reaching good selectivity towards styrene. Especially, we demonstrated that confinement and electronic effects are occurring and that Ru NP interparticle distance affects the catalyst activity, whereas electronic effects mainly govern the catalyst selectivity. The stability of the Ru NP assembly is finally discussed

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Serp, Philippe and Axet Marti, Maria Rosa
Statistics:download
Deposited On:13 May 2020 14:30

Repository Staff Only: item control page