Trajin, Baptiste and Vidal, Paul-Etienne
Bond graph multi-physics modeling of encapsulating materials in power electronic modules.
(2020)
The European Physical Journal Applied Physics, 89 (2). 20902. ISSN 1286-0042
|
(Document in English)
PDF (Publisher's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 1MB |
Official URL: https://doi.org/10.1051/epjap/2020180287
Abstract
This paper focuses on multi-physics modeling of encapsulating gels in power electronic modules for transient and steady-state simulation. With the emergence of wide-bandgap semiconductors such as SiC or GaN, operating at a higher temperature than conventional Si power chips, this passive element of the packaging appears as a few studied element sensitive to thermal and mechanical stresses. A thermo-mechanical coupled modeling of the material, based on bond graph representation, is presented. This approach allows to establish, under the same formalism, an analogy between the different physical domains. From this analogy, a multi-physical nonlinear state space representation is built, allowing transient simulation of the thermo-mechanical behavior of the material. This way of modeling and simulating is particularly adapted for a preliminary study during the upstream phases of design of the power electronic modules. It quickly establishes the maximum temperature and mechanical strains experienced by the gel.
Item Type: | Article |
---|---|
Additional Information: | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
HAL Id: | hal-02880897 |
Audience (journal): | International peer-reviewed journal |
Uncontrolled Keywords: | |
Institution: | Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE) |
Laboratory name: | |
Statistics: | download |
Deposited On: | 15 Jun 2020 09:36 |
Repository Staff Only: item control page