OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Modeling and simulation of two-phase flow turbulent combustion in aeronautical engines

Rochette, Bastien. Modeling and simulation of two-phase flow turbulent combustion in aeronautical engines. PhD, Energétique et Transferts, Institut National Polytechnique de Toulouse, 2019

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
29MB

Abstract

Nowadays, more than 80% of the energy consumed on Earth is produced by burning fossil fuels. Alternative solutions to combustion are being developed but the specific constraints related to air transport do not make it possible to currently power engines without introducing a technological breakthrough. These findings explain the research activity to improve the knowledge and the control of combustion processes to design cleaner, and more efficient aeronautical engines. In this framework, Large Eddy Simulations (LES) have become a powerful tool to better understand combustion processes and pollutant emissions. This PhD thesis is part of this context and focuses on the models and numerical strategies to simulate with more accuracy turbulent gaseous and two-phase reacting flows in the combustion chamber of aeronautical engines. First, a generic and self-adapting method for flame front detection and thickening has been developed for the TFLES model, and validated on several academic configurations of increasing complexity. This generic approach is then evaluated in the LES of a laboratory-scale burner and compared to the classical thickening method. Results show a more accurate thickening in post-flame regions. Second, from the analysis of 1-D homogeneous laminar spray flames where the dispersed phase has a relative velocity compared to the carrier phase, two analytical formulations for the spray flame propagation speed have been proposed and validated. The agreement between the overall trend of both the measured/estimated spray flame speeds demonstrates that the model and its parameters correctly take into account the main physical mechanisms controlling laminar spray flames. Finally, the state-of-the-art TFLES models were tested on complex turbulent gaseous and two-phase reacting configurations. The pros and cons of these models were investigated to contribute to the understanding of the mechanisms related to turbulent combustion, and to propose a LES modeling strategy to improve the fidelity of reactive simulations.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Poinsot, Thierry and Vermorel, Olivier
Statistics:download
Deposited On:16 Mar 2020 10:11

Repository Staff Only: item control page