OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects

Cares-Pacheco, María G. and Calvet, Rachel and Vaca Medina, Guadalupe and Rouilly, Antoine and Espitalier, Fabienne Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects. (2015) International Journal of Pharmaceutics, 494 (1). 113-126. ISSN 0378-5173

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Official URL: https://doi.org/10.1016/j.ijpharm.2015.07.078

Abstract

Powders are complex systems and so pharmaceutical solids are not the exception. Nowadays, pharmaceutical ingredients must comply with well-defined draconian specifications imposing narrow particle size range, control on the mean particle size, crystalline structure, crystal habits aspect and surface properties of powders, among others. The different facets, physical forms, defects and/or impurities of the solid will alter its interaction properties. A powerful way of studying surface properties is based on the adsorption of an organic or water vapor on a powder. Inverse gas chromatography (IGC) appears as a useful method to characterize the surface properties of divided solids. The aim of this work is to study the sensitivity of IGC, in Henry’s domain, in order to detect the impact of size and morphology in surface energy of two crystalline forms of an excipient, d-mannitol. Surface energy analyses using IGC have shown that the α form is the most energetically active form. To study size and shape influence on polymorphism, pure α and β mannitol samples were cryomilled (CM) and/or spray dried (SD). All forms showed an increase of the surface energy after treatment, with a higher influence for β samples (γsd of 40–62mJm−2) than for α mannitol samples (γsd of 75–86mJm−2). Surface heterogeneity analysis in Henry’s domain showed a more heterogeneous β-CM sample (62–52mJm−2). Moreover, despite its spherical shape and quite homogeneous size distribution, β-SD mannitol samples showed a slightly heterogeneous surface (57–52mJm−2) also higher than the recrystallized β pure sample (∼40mJm−2).

Item Type:Article
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Ecole nationale supérieure des Mines d'Albi-Carmaux - IMT Mines Albi (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
French research institutions > Institut National de la Recherche Agronomique - INRA (FRANCE)
Laboratory name:
Statistics:download
Deposited On:02 Apr 2020 07:31

Repository Staff Only: item control page