OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Analysis of spray-wall impingement, fuel film spreading and vaporisation for reciprocating engine applications

Lamiel, Quentin. Analysis of spray-wall impingement, fuel film spreading and vaporisation for reciprocating engine applications. PhD, Energétique et Transferts, Institut National Polytechnique de Toulouse, 2019

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
17MB

Abstract

The road transport is responsible of a considerable amount of pollutants emissions at the worldwide scale. To tackle this issue, many laws are trying to give a framework to reduce the emissions at the global scale. The law are always more restrictive, and they oriented the car manufacturers to the reduction of their gasoline engine size. This phenomenon, called downsizing, lead to the use of direct injection in order to improve the power/volume ratio of the engine. However, with direct injection the problem of particle emissions arose. Indeed, the liquid film generated during the injection process are responsible of inhomogeneities in the combustion chamber which lead to particles formation. In this context, the study of the fuel films in the combustion chamber is a major concern. To perform this study several experimental apparatus are designed in this thesis. A high-pressure 3-hole solenoid injector is used in order to generate liquid films. The generation and the spreading of the liquid films is observed and modelled. Then the thermal aspects of the spray impingement is studied, to characterise the local heat transfer. These thermal loss are delaying the evaporation of the liquid film, which will lead to inhomogeneities in the combustion chamber and particle generation. A modelling of the heat transfer is also proposed, finally the evaporation rate of alkanes films is proposed. Mono and multicomponents films are studied, these measures were used to calibrate a numerical model for the evaporation of thin liquid films on hot walls. Together with the previous experimental investigationsand models a test campaign on a real engine has been held. The objective is to confirm that, the results produced out of the engine are transposable to the engine (with careful attention). Conclusions on the different aspects are then presented

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Legendre, Dominique
Statistics:download
Deposited On:06 Jan 2020 15:19

Repository Staff Only: item control page