Pivert, Olivier and Prade, Henri
Handling uncertainty in relational databases with possibility theory - A survey of different modelings.
(2018)
In: International Conference on Scalable Uncertainty Management (SUM 2018), 3 October 2018 - 5 October 2018 (Milan, Italy).
|
(Document in English)
PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 238kB |
Official URL: https://doi.org/10.1007/978-3-030-00461-3_30
Abstract
Mainstream approaches to uncertainty modeling in relational databases are probabilistic. Still some researchers persist in proposing representations based on possibility theory. They are motivated by the ability of this latter setting for modeling epistemic uncertainty and by its qualitative nature. Interestingly enough, several possibilistic models have been proposed over time, and have been motivated by different application needs ranging from database querying, to database design and to data cleaning. Thus, one may distinguish between four different frameworks ordered here according to an increasing representation power: databases with (i) layered tuples; (ii) certainty-qualified attribute values; (iii) attribute values restricted by general possibility distributions; (iv) possibilistic c-tables. In each case, we discuss the role of the possibility-necessity duality, the limitations and the benefit of the representation settings, and their suitability with respect to different tasks.
Repository Staff Only: item control page