To cite this version:
Habbal, Safia and Haddou, Boumediene and Canselier, Jean-Paul and Gourdon, Christophe Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System. (2019) Tenside Surfactants Detergents, 56 (2). 112-118. ISSN 0932-3414
Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System

This study aimed to investigate the simultaneous removal of methylparaben (MePB) and propylparaben (PrPB) from effluents (each one at 16 mg/L) using a nonionic micellar system containing Triton X-114. Response surface methodology (RSM) has been carried out. Extraction results using nonionic surfactant two-phase system were considered as a function of surfactant concentration and temperature variation. Four responses were investigated: MePB and PrPB extraction yield (E), solute (X_{s,w}) and surfactant (X_{w,w}) concentrations in the aqueous phase and the volume fraction of micellar phase (ΦC) at equilibrium. Very high extraction efficiencies (99% for PrPB and 84% for MePB) were achieved at optimal conditions. Thereby, the amounts of PrPB and MePB were reduced 80 and 5 times, respectively. The extraction improvement using sodium sulfate was also shown. Finally, the solute stripping from micellar phase by pH change was proved.

Key words: Methylparaben, propylparaben, non-ionic surfactant, response surface methodology, extraction

Introduction

p-Hydroxybenzoic acid esters, known as parabens (PBs), were widely used as preservatives in pharmaceuticals, foods and personal care products [1]. Methylparaben and propylparaben are usually used and often present together in the products [2]. The maximum concentration in cosmetics formulation is limited to 0.4% for individual paraben molecules and to 0.8% in combination [3]. However, the paraben concentration in pharmaceutical products seldom exceeds 1%. They are used as excipients to preserve the active ingredient from microbial contamination and prevent degradation [4]. In front of this craze for parabens, many papers led to a discussion about their possible carcinogenicity and estrogenic effects [5, 6]. They are suspected to change the hormone concentration in organisms and were found in breast tumors [7, 8]. Furthermore, due to their potential toxicity and estrogen-mimicking properties, parabens are resistant to biological treatment in wastewater treatment plants [9–11].

As an alternative to conventional and more recent wastewater treatments such as aerated biofilm system [12, 13], ozonation [14], electrochemical methods [15, 16], sonochemical degradation [17], photodegradation [18, 19] and photolysis [20], Cloud Point Extraction (CPE) is a relatively simple and environmentally friendly technique [21–26]. Involving a thermoseparating system, it avoids the use of an organic solvent, produces a small sludge volume and requires low energy consumption. This process is very efficient for water treatment containing hazards of different organic or metal ions [21, 27–42]. CPE could even be implemented in a continuous process [42–47].

On the basis of this finding, the simultaneous CPE of methylparaben (MePB) and propylparaben (PrPB) from their aqueous solutions at 16 mg/L was studied. Triton X-114 (TX-114) which is characterized by fast separation kinetics and a low clouding temperature (Tc = 23°C), was further investigated concerning its phase behavior in water and its ability to extract the two solutes. Hence, we measured the cloud point (Tc) of the water-surfactant, water-surfactant-solute as well as water-surfactant-sodium sulfate systems. Extraction experiments in batch mode were conducted in order to demonstrate the applicability of nonionic micellar system to the CPE of parabens. All the extraction results were modeled by an experimental design as a function of temperature and surfactant concentration. Finally, sodium sulfate addition and pH effects on extraction yield were investigated.

Materials and Methods

1. Materials

The commercial nonionic surfactant investigated in this study, Triton X-114, belongs to the polyethoxylated alkylphenol family.
(formula: (CH$_3$)$_2$C-(CH$_2$)$_n$-CH$_2$NaO(C$_2$H$_4$O)$_m$-H, with n = 7 or 8), was supplied by Sigma Aldrich (T$_c$ = 23.1 °C). Its critical micelle concentration was 2 × 10$^{-4}$ M. MePB (methyl 4-hydroxybenzoate), PrPB (propyl 4-hydroxybenzoate), methanol (HPLC grade), acetonitrile (HPLC grade) and sodium sulfate were provided by Sigma Aldrich. Distilled water was used for dilutions and deionized water for HPLC analyses.

2.2 Methods

Cloud point measurement was achieved using a Mettler FP 900 device. The cloud point temperature (CPT) was defined as the temperature at which the sample turned turbid.

The distribution of parabens (MePB and PrPB) in the two-phase system TX-114/water was studied in batch experiments. Samples (5 mL) containing 16 mg/L of each paraben and TX-114 (at concentrations of 1 – 5 wt.%) were prepared in distilled water. The homogenized samples were placed in a precision oven for 2 h (at temperatures between 20 °C and 40 °C). Parabens and surfactant concentrations in aqueous phase were determined by using a Shimadzu RP-HPLC system, with a quaternary pump, degasser, tempered autosampler, column thermostat. Column RP18 (ODS), 1 mL/min, UV detector (wavelength 275 nm), injected volume 20 μL, mobile phase: H$_2$O/CH$_3$CN/CH$_3$OH, 7/60/33 (v/v/v).

3 Results and Discussion

3.1 Binary and pseudo-binary liquid-liquid equilibrium

Alkylphenol polyethoxylate (APEO) derivatives owe their solubility in water to the hydration of polar head group. However, most compounds dissolved in water decrease the solubility of a second component. Figure 1 depicts the effect of MePB and PrPB and Na$_2$SO$_4$ on the cloud point curve of Triton X-114. The significant interaction between MePB, PrPB and TX-114 leads to a reduced surfactant solubility in water and thereby to a cloud point lowering [41]. One can also notice from Figure 1 that Na$_2$SO$_4$ lowers the cloud point of Triton X-114. Indeed, the salt weakens the hydrogen bond between the water molecule and polyoxyethylene chain. The terminology “salting-out” effect is usually used to describe such a phenomenon [33, 48, 49]. Hence, the adjustment of surfactant and salt concentrations allows the CPE of heat sensitive products at room temperature. Furthermore, the cloud point control contributes to the reduction of heating energy cost of large scale CPE process.

3.2 Experimental design

Extraction results using micellar phase of TritonX-114 were considered as a function of surfactant concentration (X_{sf}), and temperature (T). Four responses (Y) were investigated: MePB and PrPB extraction yield (E), solute ($X_{s,w}$) and surfactant ($X_{sf,w}$) concentrations in the aqueous phase and volume fraction of micellar phase (φ_c) at equilibrium. A polynomial model was used to correlate the relationship among the independent variables (X_{sf} and T) and the four responses: E, $X_{s,w}$, $X_{sf,w}$ and φ_c [50]. The quadratic equations examined the effects of each independent variable on the response:

\[
Y = a_0 + a_1X_{sf} + a_2T + a_{12}X_{sf}T + a_{11}X_{sf}^2 + a_{22}T^2
\]

(1)

A central composite design was considered to determine the polynomial model constants of the predictive equation. The models were checked by plotting computed data against experimental results.

The following quadratic correlations showed a good fit with the experimental data and give the slope and the regression coefficient (R^2) closest to unity:

\[
E_{(MePB)} = 63.3850 - 23.9050X_{sf} + 1.2070T
\]
\[+ 1.0250X_{sf}T - 1.5500X_{sf}^2 - 0.0466T^2 \]

(2)

\[
E_{(PrPB)} = 148.3263 - 21.1850X_{sf} - 2.4525T
\]
\[+ 1.1065X_{sf}T - 2.8723X_{sf}^2 + 0.0036T^2 \]

(3)

\[
X_{s,w}(MePB) = 7.3850 + 6.6750X_{sf} - 0.4365T
\]
\[- 0.2775X_{sf}T + 0.4700X_{sf}^2 + 0.0148T^2 \]

(4)

\[
X_{s,w}(PrPB) = -6.7325 + 2.0450X_{sf} + 0.3855T
\]
\[- 0.1450X_{sf}T + 0.4675X_{sf}^2 - 0.0010T^2 \]

(5)
\[X_{sf,w} = 0.0997 + 0.0310 X_{sf} - 0.0039 T \]
\[- 0.0003 X_{sf} T - 0.0017 X_{sf}^2 \]
(6)

\[\varphi_C = 0.1188 + 0.0900 X_{sf} - 0.0045 T \]
\[- 0.0014 X_{sf} T + 0.0018 X_{sf}^2 \]
(7)

3.2.1 CPE yield, E (%)

Figure 2 represents the simultaneous effect of surfactant concentration \(X_{sf} \), and temperature \(T \) on the extraction yield \((E) \) smoothed by equations (2) and (3). The extraction percentage \((E) \) of MePB and PrPB increases with \(X_{sf} \) and reaches 99% for PrPB and 84% for MePB at 40°C and with 4 wt.% of TX-114. Furthermore, a temperature rise increases the extraction extent of both MePB and PrPB. Other extraction systems showed a similar behavior [27, 35, 47]. The darker area defines favorable CPE conditions for the two parabens (Figure 2). A temperature rise produces a simultaneous second effect: It increases the concentration of solute in the micellar phase induced by a decrease of the coacervate volume fraction \((\varphi_C) \) [33].

3.2.2 Residual concentration \(X_{s,w} \) of MePB and PrPB,

Figures 3a and 3b show the simultaneous effect of the parameters \(X_{sf} \), and \(T \) on the studied response \(X_{s,w} \) of MePB and PrPB, respectively, smoothed by equations (4) and (5). The figures show that the remaining concentrations of parabens in the dilute phase \(X_{s,w} \) go through a minimum according to \(X_{sf} \) and \(T \). Indeed, PrPB concentration was reduced to 0.18 mg/L and that of MePB to 3.23 mg/L. Hence, under propitious conditions of \(X_{sf} \) and \(T \) (light colored zones), solute concentrations are almost 80 and 5 times low-

Figure 2 Simultaneous effect of surfactant concentration \((X_{sf}) \) and temperature \((T) \) on the extraction extent: \(E(\%) = f(X_{sf}, T) \); a) MePB; b) PrPB (Smoothed by Eqs. 2 and 3)

Figure 3 Simultaneous effect of surfactant concentration \((X_{sf}) \) and temperature \((T) \) on the remaining concentration of solute: \(X_{s,w} = f(X_{sf}, T) \); a) MePB; b) PrPB. (Smoothed by Eqs. 4 and 5)
er than the initial concentrations for PrPB and MePB, respectively. Indeed, the extraction yield, E, of MePB is lower than that of PrPB (Figures 2a and 2b). However, residual concentrations of MePB are higher than those obtained for PrPB (Figures 3a and 3b). These results are in good agreement with the partition coefficients of both solutes in octan-1-ol and water. Moreover, MePB is more soluble in water than PrPB (Table 1), which makes the extraction of the latter easier.

3.2.3 Residual concentration of surfactant, $X_{sf,w}$

Although TX-114 is biodegradable, high residual concentration of surfactant in aqueous phase (X_{sf}) will compromise the CPE process [38, 52–54]. Indeed, it is more economical to minimize this response. Figure 4 illustrates the effect of surfactant concentration (X_{sf}), and temperature (T) on the response, $X_{sf,w}$ smoothed by equation (6). This figure shows that the remaining concentration of TX-114 is high at high values of X_{sf} and decreases slightly when the temperature rises, which, however, corresponds to favorable conditions for high extraction efficiency [54].

3.2.4 Volume fraction of coacervate, ϕ_c

In order to increase the concentration factor and the volume of the treated effluent, ϕ_c needs to be as low as possible. Figure 5 represents the iso-response surfaces of ϕ_c vs. X_{sf} and T smoothed by equation (7). When X_{sf} increases, ϕ_c increases almost linearly. The coacervate owes this behavior to the progressive enrichment of the micellar phase following retent-

tion of water molecules by the polyoxyethylene chain of TX-114. However, high values of initial concentrations of surfactant (X_{sf}) are favorable for the CPE extraction of parabens (Fig. 2). Such antagonist behavior was obtained with several micellar systems investigated in our previous studies [31, 35]. Figure 5 also shows that low values of ϕ_c were obtained as the temperature increased. Indeed, the heat induced a dehydration of the polar head group of surfactant in the micellar phase; thereby a more concentrated and smaller coacervate was obtained at high temperatures.

3.4 Electrolyte (Na_2SO_4) effect on the CPE parameters

Figure 6a shows that the Na_2SO_4 concentration increases the MePB and PrPB extraction yields ($E\%$). The salting-out effect of electrolyte reduces the solubility of solutes and surfactant in water. Hence, residual concentration of MePB and TX-114 decreased as the salt concentration was increased (Figs. 6b and 6c). According to Saito and Shinoda [56], the addition of salting-out electrolytes to nonionic micellar solution lowers cmc, which induces a micellar number increase. Consequently, the hydrocarbon solubilization capacity of such system is improved. Furthermore, one can see from Figure 6c that the electrolyte addition to the TX-114-parabens-water system minimizes the coacervate volume fraction (ϕ_c) and improves the concentration factor.

3.5 Stripping of solutes from the micellar phase

Ionic and neutral molecules are distributed differently between aqueous and micellar phases in a CPE [35]. In fact, ionic species have more affinity to water molecules. Slight interactions may occur with the surfactant and such species. For acidic or basic solutes, the influence of the pH can be used for extraction and back-extraction processes. Figure 7 shows that the distribution of MePB and PrPB between aqueous and micellar phases is highly affected by pH. The extraction yield ($E\%$) decreases significantly at pH above pK$_a$ values of MePB (pK$_a = 8.17$) and PrPB (pK$_a = 8.35$) (Table 1). Parabens are mainly in neutral form (R–OH) at pH below their pK$_a$ and in ionic form (R–O$^-$) above their pK$_a$. The ionic form is more soluble in water than the neutral form. Hence, as in our previous works [34, 35, 37, 38], the solute was stripped from micellar phase by a pH shift above pK$_a$ of MePB and PrPB.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MePB</th>
<th>PrPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight (g/mol)</td>
<td>152.16</td>
<td>180.21</td>
</tr>
<tr>
<td>pK_a</td>
<td>8.17</td>
<td>8.35</td>
</tr>
<tr>
<td>Log octanol–water partition coefficient (log P)</td>
<td>1.66</td>
<td>2.71</td>
</tr>
<tr>
<td>Solubility in water at 25°C (g/100 mL)</td>
<td>2.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 1 Physical and chemical characteristics of MePB and PrPB [7]
Figure 6 Effect of Na$_2$SO$_4$ at 2 wt.% of TX-114 and 20°C on: a) MePB and PrPB extraction extent (E %); b) remaining concentration of MePB and PrPB ($X_{s.w}$); c) remaining concentration of TX-114 ($X_{s.f.w}$); d) micellar volume fraction: (q_i).

Figure 7 pH effect of on MePB and PrPB extraction extent (E %).
The aim of this work is to move towards “green”, i.e. non-polluting, energy-saving chemical processes. Cloud Point Extraction (CPE) was used to efficiently remove parabens (MePB and PrPB) from wastewater. The effects of surfactant concentration and temperature on extraction extent, solute and surfactant residual concentrations and coacervate-volume fraction were studied. The best compromise between the parameters governing extraction effectiveness was found using the response surface methodology. A temperature range between 20°C and 30°C and a surfactant concentration lower than 5 wt.% (to minimize coacervate volume fraction) are suitable for CPE of the two parabens. These yielded extraction rates of 99% and 84% for PrPB and MePB, respectively. After CPE, the remaining concentrations of PrPB and MePB were 80 and 5 times lower than initial concentrations (16 mg/L), respectively. Na$_2$SO$_4$ improved the extraction yield of MePB and PrPB. The extraction of the solutes was high in the acidic pH range (below pK$_a$ values of MePB and PrPB). Thus, it was shown that pH can be used for solute stripping from micellar phase and surfactant recycling in the CPE process.

4 Conclusion

The aim of this work is to move towards “green”, i.e. non-polluting, energy-saving chemical processes. Cloud Point Extraction (CPE) was used to efficiently remove parabens (MePB and PrPB) from wastewater. The effects of surfactant concentration and temperature on extraction extent, solute and surfactant residual concentrations and coacervate-volume fraction were studied. The best compromise between the parameters governing extraction effectiveness was found using the response surface methodology. A temperature range between 20°C and 30°C and a surfactant concentration lower than 5 wt.% (to minimize coacervate volume fraction) are suitable for CPE of the two parabens. These yielded extraction rates of 99% and 84% for PrPB and MePB, respectively. After CPE, the remaining concentrations of PrPB and MePB were 80 and 5 times lower than initial concentrations (16 mg/L), respectively. Na$_2$SO$_4$ improved the extraction yield of MePB and PrPB. The extraction of the solutes was high in the acidic pH range (below pK$_a$ values of MePB and PrPB). Thus, it was shown that pH can be used for solute stripping from micellar phase and surfactant recycling in the CPE process.

References

Bibliography

DOI 10.3139/113.10611

Correspondence address

Prof. Dr. Haddou Boumediene
Laboratory of Physical Chemistry of Materials: Catalysis and Environment University of Science and Technology of Oran BP 1505, M'Noir, Oran Algeria
E-Mail: Boumediene74@yahoo.fr

The authors of this paper

Ms. Habbal, Safia is a Ph.D. student in the University of the Sciences and Technology of Oran. His research interest is in separation science using cloud point extraction of organic and metallic species from effluent.

Prof. Boumediene Haddou received his Ph.D. in chemical engineering and environment in 2003 from INP-Toulouse, France. He has guided more than 10 M.Sc. and Ph.D. students and published more than 20 articles. At present, he is a professor at the Faculty of Chemistry, University of the Sciences and Technology of Oran, Algeria. He is also the director of the research group in Laboratory of Physical Chemistry of Materials: Catalysis and Environment (LPCM-EC).

Dr. Canselier, Jean Paul (actually retired) was a University Teacher at the National Polytechnic Institute of Toulouse (National School of Arts in Chemical Engineering and Technology) and researcher at the Laboratory of Chemical Engineering. His teaching and research mainly concern physical chemistry (including interfacial phenomena), and industrial chemistry. He was in charge of the publications of the formulation Group of the French Chemical Society.

Professor Coudron, Christophe is a University Teacher at the National Polytechnic Institute of Toulouse (National School of Arts in Chemical Engineering and Technology). As a CNRS researcher for 10 years at Chemical Engineering Laboratory of Toulouse, its work has focused on solvent extraction and related technology, and more generally on the study of liquid-liquid dispersed flows. Professor since 1992, he developed a scientific strategy based on promoting continuous processes intensified. He leads a team whose themes are: microreactors and microthermal, reactors and microstructured mini-exchangers. Involved in the promotion of research he has been a consultant to various companies (Total, Arkema, Rhodia, …), director of CRITT Process Engineering, and recently he helped the MEPI (Process Intensification industrial demonstration platform create to in Toulouse. He was expert at the MASTP (1994 – 1997), Vice-President and Chairman of the 62th CNU section (Energy and Process Engineering) since 2003.