Trilles, Sébastien
Topologie des (M-2) Courbes réelles symétriques.
(2003)
Bulletin of London Mathematical Society, 35 (2). 161-178. ISSN 1469-2120
|
(Document in English)
PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 1MB |
Official URL: https://doi.org/10.1112/S0024609302001698
Abstract
Let X be a non-singular real algebraic curve of even degree in the complex projective plan. In this paper we propose a result about (M-2)-curves that are invariant under the projective involution. In particular, if the (M-2) symetric curve satisfies the Arnold congruence, then either X or its twin is a separation curve.
Item Type: | Article |
---|---|
HAL Id: | hal-02168375 |
Audience (journal): | International peer-reviewed journal |
Uncontrolled Keywords: | |
Institution: | French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE) Université de Toulouse > Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE) Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE) Université de Toulouse > Université Toulouse - Jean Jaurès - UT2J (FRANCE) Université de Toulouse > Université Toulouse 1 Capitole - UT1 (FRANCE) |
Laboratory name: | |
Statistics: | download |
Deposited On: | 28 Jun 2019 13:07 |
Repository Staff Only: item control page