OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Sustainable design of biorefinery processes: existing practices and new methodology

Julio, Remi and Albet, Joël and Vialle, Claire and Vaca-Garcia, Carlos and Sablayrolles, Caroline Sustainable design of biorefinery processes: existing practices and new methodology. (2017) Biofuels, Bioproducts and Biorefining, 11 (2). 373-395. ISSN 1932-104X

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
568kB

Official URL: https://doi.org/10.1002/bbb.1749

Abstract

Nowadays, eco-designing products is increasingly practiced. The next challenge for sustain- ability is to optimize production processes. Biorefi neries are particularly concerned with this improve- ment, because they use renewable resources. To identify the contribution of transformation processes to the overall environmental impacts, Life Cycle Assessment (LCA) appears as the adequate method. A literature review highlights that LCA is mainly performed on biorefi neries to compare biomass feed- stocks between them and to a fossil reference. Another part of environmental LCA compares the impacts of different processing routes. Nevertheless, these evaluations concern already designed pro- cesses. Generally, processes are considered as a unique operation in assessments. However, some criteria like operating can notably modify environmental burdens. The eco-design of biorefi nery pro- cesses can be guided by coupling process simulation to LCA. This method has been emerging in the chemical sector in recent years. Consequently, this paper proposes a new methodological approach to assessing the complete sustainability of biorefi nery processes, since its fi rst design stages. In addi- tion to coupling process simulation and environmental LCA, the other pillars of sustainability will be assessed. Indeed, Life Cycle Costing and Social Life Cycle Assessment can be performed to obtain an integrated methodological framework. The simultaneous optimization of the environmental, economic, and social performances of the process can lead to antagonist ways of improving. Consequently, compromises should be realized. Thereby, the multi-objective optimization can be accomplished by a metaheuristic method supported by a decision-making tool. Finally, the main limits of this method and some perspectives and ways for improving are discussed.

Item Type:Article
HAL Id:hal-01601416
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
French research institutions > Institut National de la Recherche Agronomique - INRA (FRANCE)
Laboratory name:
Statistics:download
Deposited On:08 Mar 2019 14:00

Repository Staff Only: item control page