OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: https://oatao.univ-toulouse.fr/22317

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
A General Framework and Optimization for Spatially-Coupled Serially Concatenated Systems

Tarik Benaddi
Lab-STICC/IMT Atlantique
tarik.benaddi@int-atlantique.fr

Charly Poulliat
IRIT/INPT-ENSEEIHT
charly.poulliat@enseeiht.fr

Romain Tajan
IMS/Bordeaux INP-ENSEIRB
romain.tajan@ims-bordeaux.fr

Abstract—In this paper, we provide a general framework for spatially-coupled concatenated systems. We explicit the analogy with spatially-coupled protographs and provide an adapted EXIT chart analysis. By proposing a continuous-valued coupling matrix, we propose a code design procedure for faster convergence. When considering general bit-interleaved coded-modulation scheme, we also conjecture that the spatially-coupled scheme of general detectors saturates to a value very close (lower bound) to the threshold given by the Area theorem.

Index Terms—Turbo codes, Spatially coupling, AWGN, EXIT charts, Saturation, bit-interleaved coded-modulation, Faster-than-Nyquist

I. INTRODUCTION

The convolutional counterparts of LDPC codes are called LDPC convolutional (LDPC-C) codes [1]. They are obtained by spatial coupling of LDPC codes and can also be described by a sparse parity check matrix and consequently being decoded with message passing decoding algorithms. Because of the coupling, this family of codes show very good thresholds thanks to the so-called saturation phenomenon: it was proven for the Binary Erasure Channel (BEC) that the threshold under belief propagation decoding converges to the optimal Maximum a posteriori (MAP) threshold [2]. Later on, an other proof using the potential function extended these results to other channels [3], [4]. Different methods can be used to construct LDPC-C such as unwrapped LDPC codes [5] or spatially-coupled protograph codes [6].

Recently, different papers extended the spatial coupling to serial and parallel concatenated turbo-codes [7]–[10] and derived the saturation proof for the BEC channel. In [7], [8], authors proposed the spatial coupling of systematic parallel and serial turbo-codes and concluded that for the BEC, coupled serially concatenated schemes have better threshold than their parallel counterparts. In order to terminate the spatially coupled ensemble, they proposed to force the last information symbols to zeros. Finally, they studied rate compatible ensembles using puncturing.

In [11], same authors studied the finite length performance of braided convolutional codes (BCC) and showed that the minimum distance of the coupled ensemble is lower bounded by the the minimum distance of the uncoupled ensemble. In [9], the authors reviewed the literature results on BCC and present an unified description on BCC with respect to other turbo-like codes.

In this paper, we intend to generalize previous works to the framework of the spatial coupling of general serially concatenated systems. First, we will describe the proposed coupling procedure, then we show that it is actually the spatial coupling of a generalized multi-edge type (MET) or protograph LDPC code [12]. Secondly, inspired by Protograph EXIT (P-EXIT) charts [13], we describe the EXIT chart equations to study the asymptotic behaviour of such systems. We also explain where the coupling gain comes from and describe the termination and the tail-biting procedures. Thirdly, thanks to the proposed framework, we explore the effect of the syndrome former memory and, by redefining the proposed coupling matrix into a continuous-valued matrix, we introduce an optimization procedure that optimizes the coupling in order to reduce the number of iterations before convergence. Finally, we discuss some results and we conjecture that the threshold of spatially-coupled serially concatenated systems is lower bounded by the threshold given by the area theorem [14].

II. SYSTEM DESCRIPTION

Without loss of generality, as an example of serially concatenated system, we consider in this paper general bit-interleaved coded-modulation (BICM) schemes where the outer component is an error correcting code and the inner component is a general modulation scheme (coded modulation or modulation with memory as in the case of faster-than-Nyquist scheme).

A. General spatially coupled Bit-interleaved coded modulation schemes

Let us consider the serially concatenated scheme composed of an error correcting code and a modulator as depicted in Fig. 1. For ease of exposition, we consider the simple case of a convolutional code. First, a \(k \)-bits information block \(s \in \{0, 1\}^k \) is encoded with the outer code, denoted \(\mathcal{O} \), into a \(n \)-bits coded block \(u \in \{0, 1\}^n \) (the code rate is \(R = k/n \)). Then, the sequence \(u \) is interleaved by the an interleaver \(\pi \) to obtain \(v \) and mapped into \(x = \{x_i\}_i \) with \(x_i \in \{0, \ldots, M - 1\} \) where \(M \) is the modulation order. Finally, the vector \(x \) is modulated into the analog signal \(x(t) \) using a shaping filter. For ease of notations, the mapping and the shaping are considered jointly and constitute the modulator \(\mathcal{M} \).

In this paper, we assume that the complex signal \(x(t) \) is sent over an additive white Gaussian noise (AWGN) channel with a one-sided power spectral density \(N_0 \).

At the receiver side, a classical iterative turbo receiver is considered [15], [16]: the received signal \(y(t) \) is first...
Inspired from spatially-coupled protographs, spatially-coupled turbo-codes (SC-TC) can be obtained by a variant of the edge spreading rule (ESR) [6]: in the compact graph, the encoded bits \(v \) are demultiplexed into \(m_s + 1 \) bundles, and the obtained graph is replicated a certain number of times, say \(L \). Afterwards, the \(L \) graphs are interconnected by interchanging the ends of the bundles of the same type. In order to describe these interconnections, we introduce the integer-valued coupling matrix \(B \) defined as:

\[
B = [b_0, b_1, \ldots, b_{m_s}] \in \{0, \ldots, n\}^{m_s+1}
\]

where \(b_i \) represents the width (number of bits) of the bundle connecting any copy \(t \) with its adjacent neighbour \((t + i)\). \(B \) should verify \(\sum_{i=0}^{m_s} b_i = n \).

Alike spatially-coupled LDPC codes, \(L \) is called the coupling length and \(m_s \) the syndrome former memory. For code design and convergence analysis purposes, as we are going to see later, it is more convenient to consider a continuous-valued coupling matrix. To this end, we will rather divide \(B \) by \(n \): now, \(b_i \in [0,1] \) is interpreted as the fraction of the bits \(u \) passed from the constituent code of the stage \(t \) to the stage \((t + i)\). We then have:

\[
\sum_{i=0}^{m_s} b_i = 1
\]

(1)

An example of this construction is illustrated in Fig. 4.

C. Tail-biting

In the coupled compact graph, one can notice that we end up with some vacant bundles connections at the beginning and some additional unconnected bundles at the end. One way to solve this problem is by connecting these latter all the way back with the former. This is called tail-biting and one can easily show that the rate of the obtained SC-TC is exactly equal to \(R \). However, this scheme does not show the desired coupling gain since, locally, each stage behaves exactly as the underlying TC scheme in Fig. 3.

D. Termination

A second solution is:

- adding \(m_s \) modulators at the end in order to connect the last remaining bundles
- adding known information bits at the \(m_s \) first and the \(m_s \) last mappers in order to fill the vacant bundles connections

A simple example is depicted in Fig. 5. The \(m_s \) black circles at the boundaries represent the added known bits.

We can show that, in this case, the final code rate of the coupled ensemble, when puncturing is not used, is equal to:

\[
R_L = \frac{L}{L + m_s} R = R - \frac{m_s}{L + m_s} R
\]

(2)

which is analogous to the design rate of spatially-coupled protographs. Observe that the termination (finite value of \(L \)) results in a rate loss equal to \(\frac{m_s}{L + m_s} R \). This penalty vanishes to 0 as \(L \to +\infty \).

The difference of Eq. (2) with the rate expression computed in [8] comes from the following reasons:

- Their rate loss is induced by last imposed '0's information bits used to terminate the encoder to the

B. Spatially-Coupled BICM

In this section, we describe how one can spatially couple the concatenated scheme in Fig. 3. Our proposed framework is in spirit equivalent to [7]–[10], [18], however, its formalism provides better control on design tools (component base matrix, coupling procedure, mapping optimisation, termination) and presents analogous properties to those of spatially-coupled protograph codes [6] (rate loss, component base matrix, two coupling "waves", tail-biting ...).
Fig. 4: SC TC transmitter. The coupling is done according to $B = [0.5, 0.5]$.

with general inner and outer components, evaluating the threshold by tracking the evolution of the density of the messages become a prohibitive task. Alternatively, EXIT charts [19] are usually considered.

A. Exit Chart of the uncoupled system

For a fixed channel parameter, here the symbol (or bit) energy to noise ratio E_s/N_0 (resp. E_b/N_0), the EXIT charts track the evolution of the mutual information (MI) between the current extrinsic LLRs and the corresponding bits through iterations. To this end, it uses the input-output transfer function of the different SISO blocks (here the SISO of the inner and the SISO of the outer components).

As depicted in Fig. 3, the demodulator transfer function $T_{M}(\cdot)$ computes the extrinsic MI $I_{e}(I)$ (between the LLRs $L_e(I)$ and the corresponding bits) based on the channel observations and the a priori MI $I_{a}(I)$ (between $L_a(I)$ and the corresponding bits). Similarly, the outer decoder transfer function $T_{O}(\cdot)$ computes both the extrinsic MI $I_{e}(O)$ (between $L_e(O)$ and the corresponding bits) and the a posteriori MI $I_{ap}(O)$ (between the LLRs $L_{ap}(O)$ of the corresponding bits) based on the a priori MI $I_{a}(O)$ (of $L_a(O)$ and the corresponding bits).

We perform the demodulator and the outer decoder updates until the maximum number of iterations is reached (no convergence) or $I_{ap}(O) = 1$, $\forall i$ (convergence). The analytic expressions of $T_{O}(\cdot)$ and $T_{M}(\cdot)$ are not available in the general case, consequently, we estimated them by Monte Carlo simulations. An example of EXIT charts and corresponding recursions steps are depicted in [14, Fig. 6].

B. Spatially-coupled EXIT (SC-EXIT) chart

For our analysis, we consider the i^{th} stage of the spatially-coupled compact graph depicted in Fig. 6. The following notations are used:

- The “zero state” refers to the overall SC scheme (i.e. last transmitted symbol are 0’s) and not the internal state of each constituent code.
- less connected because they have lesser real information bits at their inputs in comparison to their counterparts.

1 The “zero state” refers to the overall SC scheme (i.e. last transmitted symbol are 0’s) and not the internal state of each constituent code.

2 less connected because they have lesser real information bits at their inputs in comparison to their counterparts.
We have the same definitions for $I_b^k(i^-)$ and $I_a^k(i^-)$ with respect to the O_i^{-1} and M_i^{-1-k}.

For the SC-TC, we perform all demappers updates and all outer decoders updates of each iteration in parallel as for the flooding scheduling used in standard belief propagation algorithm [12]. Using the fact that b_k represent proportions according to Eq. (1), the differences here with the uncoupled TC are the mixtures and the boundary conditions as follows:

- $I_b^k(i^+)$ = $I_b(I_a(i))b_k$ and $I_a(I_a(i)) = \sum I_b^k(i^+).b_k$
- $I_a^k(i^-)$ = $I_a(O_i(i))b_k$ and $I_a(O_i(i)) = \sum I_b^k(i^-).b_k$
- The a priori MIs coming from the added boundary nodes are equal to 1.

The threshold of the SC-TC is then defined as the lowest E_b/N_0 such as $I_{ap}(O_i) \rightarrow 1; \forall i$.

Note that the obtained SC-EXIT chart can no more be interpreted graphically as in [14, Fig. 6], but are rather thought as a kind of Protograph EXIT (P-EXIT) chart [13], where the variable and check nodes are generalized and where the (m_s+1) incident edges are weighted by $\{b_k\}_k$.

C. Minimizing the number of iterations

The SC-EXIT chart analysis provides the asymptotic performance of an iterative scheme given a large number of iterations and a large codeword length. We can then apply classical non linear optimization methods to design coupling matrices such as [20]. When performing this optimization, we have observed that there exist several coupling matrices enabling to operate to the best achievable threshold (up to a given numerical precision). Among them, we have also observed that the convergence rate to this threshold was very different from one matrix to another. Therefore, an interesting additional criterion to consider when designing real systems is the convergence rate. In this section, we provide a framework that allows improving the convergence rate of SC-TC without altering the threshold or increasing the syndrome former memory m_s. To this aim, we consider the following procedure:

1) Pick an adequate initial coupling matrix B_0;
2) Evaluate the threshold of the corresponding SC-TC;
3) Find the optimal coupling B_{opt} such as:
- The SC-TC converges at same threshold.
- The number of iterations before convergence is minimal.

Several trials showed that coupling with the uniform matrix B_k (ie. all uniformly distributed non null entries b_k) is a good representative of the SC-TC ensemble defined by a fixed m_s, a fixed L and all possible Bs. Concerning the computation of the threshold in step 2, it can be estimated using the interval halving method. However, for step 3, two strategies can be adopted:

1) Search over a set of the form (with $N \in \mathbb{N}$): $\{\{b_k\}_k\} \sum b_k = 1$ and $b_k \in \{\frac{1}{N}|a \in [0, N]\}$.
2) Since B belongs to a continuous space, we can perform the differential evolution algorithm [20]. The feasible set can be extremely reduced. Actually, due to the symmetry of the graph Fig. 5, both coupling matrices $B_1 = \{b_k\}_k$ and $B_1 = \{b_{m_s-j-k}\}_k$ lead to the same performance. Furthermore, the dimension of the problem can be reduced by replacing the equality constraint in Eq. (1) by the polytope:

$$\sum_{i=0}^{m_s-1} b_i \leq 1$$ \hspace{1cm} (3)

and deduce, at the end, $b_{m_s} = 1 - \sum_{i=0}^{m_s-1} b_i$.

NB: If B were an integer-valued vector, only the first strategy is possible and the optimization becomes infeasible especially for targeted values of n (asymptotic length) and m_s. This is the rational behind the choice of Eq. (1).

IV. APPLICATIONS

A. Faster-Than-Nyquist based BICM

As a first application, we propose to illustrate an advanced BICM scheme based using a Faster-Than-Nyquist (FTN) waveform as a modulation device. This leads to a kind of bit interleaved coded modulation with memory that is efficiently decoded using iterative decoding. In this paper, we consider the circular FTN waveform as presented in [21]. Considering a root raised cosine (RRC) shaping filter with roll-off β and symbol period T. The...
FTN symbol period is \(T_s = \tau T \) where \(\tau \in [0, 1] \) leads to an overall spectral efficiency of

\[
\eta = \frac{R_L \log_2(M)}{\tau(1 + \beta)} \text{ (bits/s/Hz)}.
\]

Each coded and interleaved block \(\mathbf{v} \) is modulated into \(P = \left\lfloor \frac{n}{\log_2(M)} \right\rfloor \) symbols from the \(M \)-ary alphabet \(\mathcal{M} \). Let \(n = \log_2(M) \) symbols as follows:

\[
x(t) = \sum_{p=0}^{P-1} x_p h_T(t - pT_s) w_T(t)
\]

where \(h_T(t) = \sum_{l=-\infty}^{\infty} h(t - lT) \) is the circular shaping filter and \(w_T(t) \) is a window of length \(T = PT_s \). At the receiver, a low complexity SISO equalizer for mitigating the Inter-Symbol Interference (ISI) introduced by FTN is considered as given in [21]. This is mainly based on a frequency domain fractionally spaced Linear Minimum Mean Square Error (L-MMSE) soft interference canceler (see [21] for more details).

1) Coupling gain: Figure 7 depicts the evolution of the a posteriori MI through iterations of the spatially-coupled serially concatenated scheme CC+FTN at \(E_s/N_0 = 5 \text{dB} \). The threshold of the uncoupled system is \(E_s/N_0 = 5.32 \text{dB} \). As expected, the known bits at the boundaries help propagate a coupling gain (also referred in the literature as the wave effect). Therefore, even if the \(E_s/N_0 \) is bellow the threshold of the uncoupled system, all stages converge after 47 iterations. In the meanwhile, the intermediate VNs behave as in the uncoupled system.

2) Threshold: In Fig. 8, we plot the threshold vs the rate\(^4\) of the SC-TC FTN. For comparison, we included the uncoupled TC FTN and the threshold bound \(A^* \) given by the Area theorem [14]. As depicted, the coupling gain is of 1dB in comparison to the uncoupled system and is at just 0.45dB from \(A^* \). As \(L \) increases (here up to 145), we see that the spatially-coupled system saturates to a value very close to \(A^* \). This gap can be made smaller by considering larger \(L \) and a very big number of iterations.

3) Coupling optimization: With different syndrome former memories \(m_s \) and the best coupling matrices \(B \), we

\[\text{observed that thresholds remain almost the same. Consequently and in order to simplify our analysis, we focus here only on the number of iterations before convergence.}
\]

After running our optimization procedure, we observe that for our SC-CC FTN scheme, a coupling matrix of the form:

\[
B_{\text{opt}} = \left[\frac{1}{2} \right] \text{ (}\ m_s - 1\) “0” s, \ \frac{1}{2} \right]
\]

is the optimal form that minimizes the number of iterations without degrading the threshold. Figure 10 depicts the number of iterations for the uniform and the optimized BT coupling matrices. By changing the coupling matrix, we are able to converge 1.7, 2.13, 2.1, 2.6 and 3 times faster when \(m_s \) equals 2, 3, 4, 5 and 6 respectively at \(L = 145 \). For space issues, we choose to plot the results only for \(m_s \) equals 2, 3 and 6. On the other hand, observe that, with larger \(m_s \), the convergence rate is faster. However, this comes at the expense of higher rate loss because a larger amount of known bits (black nodes) are introduced.

B. Linear modulation

Let us consider now the same systematic [5, 7] outer code concatenated with a rate-1 accumulator of transfer function \(1/(1 + D) \). We choose 16-QAM modulations. In order to avoid a doubly-iterative system, we consider Gray mapping since its Exit chart is quasi flat. The obtained results are plotted in Figs. 9 and 11. One can see that the spatial coupling allows to gain 1dB in comparison to the uncoupled family and that we are at only 0.29dB from the threshold given by the area theorem.

When we optimize the coupling, the coupling matrix has no more the form in Eq. (5). The obtained coupling matrices are given in Fig. 11. Thanks to the coupling optimization, we are able to reduce the number of iterations by 1%, 22.3% and 20.8% when \(m_s \) equals 1, 2 and 3 respectively. On the other hand, when \(m_s = 2 \), observe that the convergence needs more iterations in comparison to \(m_s = 1 \). This is due to the fact that, by optimizing the coupling matrix, we are slightly improving the threshold in this case, but at the expense of more iterations.

V. CONCLUSION

In this paper, we presented a general framework of serially concatenated SC-TC. We showed the analogy with
spatially-coupled protographs and described the SC-EXIT chart analysis. We optimized the coupling matrix and designed couplings with faster convergence rates. From the obtained results, we conjectured that the SC TC scheme saturates to a value very close (lower bounded) by the Area theorem. Future work will investigate other channels and study the performance of window decoding.

REFERENCES

