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Smart Home-Based Prediction of Multidomain 
Symptoms Related to Alzheimer's Disease 

Ane Alberdi  , Alyssa Weakley, Maureen Schmitter-Edgecombe, Diane J. Cook, Fellow, IEEE, Asier 
Aztiria, Adrian Basarab  , and Maitane Barrenechea 

Abstract-As members of an increasingly aging society, 
one of our major priorities is to develop tools to detect the 
earliest stage of age-related disorders such as Alzheimer's 
Disease (AD). The goal of this paper is to evaluate the possi­
bility of using unobtrusively collected activity-aware smart 
home behavior data to detect the multimodal symptoms that 
are often found to be impaired in AD. After gathering lon­
gitudinal smart home data for 29 older adults over an av­
erage duration of >2 years, we automatically labeled the 
data with corresponding activity classes and extracted time­
series statistics containing ten behavioral features. Mobil­
ity, cognition, and mood were evaluated every six months. 
Using these data, we created regression models to predict 
symptoms as measured by the tests and a feature selection 
analysis was performed. Classification models were built 
to detect reliable absolute changes in the scores predict­
ing symptoms and SmoteBOOST and wRACOG algorithms 
were used to overcome class imbalance where needed. 
Results show that all mobility, cognition, and depression 
symptoms can be predicted from activity-aware smart home 
data. Similarly, these data can be effectively used to predict 
reliable changes in mobility and memory ski lis. Results also 
suggest that not all behavioral features contribute equally 
to the prediction of every symptom. Future work therefore 
can improve model sensitivity by including additional lon­
gitudinal data and by further improving strategies to extract 
relevant features and address class imbalance. The results 
presented herein contribute toward the development of an 
early change detection system based on smart home tech­
nology. 

Index Terms-Activity recognition, Alzheimer's disease, 
automatic assessment, behavior, multimodal symptoms, 
older adults, smart homes. 
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1. INTRODUCTION

I
NCREASING life expectancy in developed countries has 
resulted in a growing number of cases of people affected 

by age-related neurodegenerative diseases, such as Alzheimer's 
Disease (AD). An estimate of 115.4 million people will suffer 
from AD in 2050 [l], which can result in devastating conse­
quences in terms of health-care costs and quality of life of 
patients and caregivers. While there is no known cure [2], treat­
ments to delay and reduce cognitive and behavioral symptoms 
of AD do exist and are demonstrated to be more effective the 
sooner they are applied [3]. Therefore, as a matter of general 
interest, the search for methods of early detection is currently a 
high priority issue. Such methods could lead to earlier detection 
and therefore more effective intervention. The resulting bene­
fits include an increase in the independence of the patients, an 
improvement in quality of life for them and their caregivers and 
a reduction in health-care costs. 

Although AD's clinical hallmark is episodic memory impair­
ment [4], it manifests symptoms in multiple domains, including 
mood, behavior, and cognition [5]. These symptoms and the 
associated pathology are usually measured by means of self­
and informant- report questionnaires, clinical assessments con­
ducted by health care professionals and medical exarninations 
that may involve brain imaging. Often evaluations are initiated 
after symptoms have been prominent for some time, resulting 
in a delayed diagnosis [6]. Given that AD pathology in the brain 
accumulates slowly over time, a key for the treatrnents to be 
effective is early detection of the disease and implementation of 
available treatments. 

Smart homes are an emerging technological solution, based 
on the use of embedded sensors to enhance homes' intelligence, 
enabling the unobtrusive monitoring of resident's behavior 
[7]. Real-life data can be gathered non-stop in a completely 
naturalistic way, offering a complete and ecologically valid 
view of older adults' behavior and allowing the detection 
of changes that might indicate the onset of a disorder. If 
smart home-based behavior shifts were mapped to AD, many 
disadvantages of the usual assessment methods could be 
overcome: detection could be made without the need for older 
adults to travel to a health center to receive expensive and 
invasive diagnostic testing. In contrast, smart home monitoring 
may detect cognitive changes as they occur, resulting in less 
expensive and more timely diagnosis. 

In order to map detected behavior shifts to AD symptoms, ma­
chine learning-based models can be used. Machine learning is a 



TABLE I
OVERVIEW OF RELATED WORK CATEGORIZED IN TERMS OF THE MEASURED BEHAVIORAL FEATURES, THE EMPLOYED ASSESSMENT TESTS,

PREPROCESSING AND ANALYSIS TECHNIQUES, AND THE OBSERVED RESULTS (C = COGNITION, MOB = MOBILITY, M = MOOD, n = SAMPLE SIZE)

Ref. Behavior Tests Preprocessing and Analysis Main results

Dawadi et al. (n = 18) ADL, sleep, mobility,
outings

C: RBANS; Mob:
TUG

-AR + daily behavior
stats-Machine-learning

C: r = 0.72, %72 Mob: r = 0.45, %76

Hayes et al. (n = 14) Amount of activity,
walking speed

C: CDR, MMSE -Wavelet analysis -Mixed-model
ANOVA

MCI Doubled coefficient of variation in the
median walking speed (p < 0.03) and
increased variability in the amount of
activity (p < 0.008)

Galambos et al. (n = 5) Time out, activity
level

C: MMSE, SFHS-12;
M: GDS

Motion and out of home density
maps

Correlation between the scores and activity
level/outings (Qualitative)

Petersen et al. (n = 85) Time out, in-home
walking speed

C: CDR; M, Physical
activity

Tobit mixed-effects regression model Correlated time spent out of home and
cognitive (p < 0.001), physical (p < 0.001)
and emotional state (p < 0.001).

Austin et al. (n = 16) Time out, n◦ of phone
calls, computer use,
walking speed,
mobility

M: loneliness Longitudinal linear-mixed effects
regression model + CV

Correlated loneliness and both time out of
home (p < 0.01) and computer sessions (p <
0.05)

Alberdi et al. (n = 29) ADL, sleep, mobility,
global routine, outings

C: RBANS, PRMQ,
Digit Cancel; Mob:
Arm Curl, TUG; M:
GDS

-AR + daily behavior stats + RCI +
positive/negative change
-Machine-learning + SMOTEBoost +
wRACOG

See Results in Section III

subdiscipline of artificial intelligence (AI) aimed at building al-
gorithms that are able to learn and/or adapt their structure based
on a set of observed data (i.e., example data or past experience)
[8], [9]. This technique offers an approach for the analysis of
high-dimensional and multimodal biomedical data. A wide va-
riety of methods exist within this area, including both regression
(e.g. Support Vector Regression, Linear Regression or k Near-
est Neighbors) and classification methods (e.g., Support Vector
Machines, AdaBoost, Multilayer Perceptron or Random For-
est). Whereas regression models predict continuous variables
(e.g., a score for a standardized assessment test), classification
models determine symbolic class labels for the data (e.g., af-
fected vs. non-affected by a disease). For a detailed explanation
of specific machine learning algorithms, we refer the reader to
the literature [10], [11].

Our goal in this paper is to assess the possibility of detecting
changes in psychological, cognitive and behavioral symptoms
of AD by making use of unobtrusively collected smart home
behavior data and machine learning techniques. The affirmation
of this hypothesis would result in development and implemen-
tation of an early detection system for disorders that provoke
behavioral changes, such as AD. Such a system could alert pa-
tients and relatives of likely changes, making it possible to take
timely action.

Previous research has demonstrated that the combination of
machine learning techniques and longitudinal monitoring of
smart home-based behavioral data can be useful not only to
assess older adults’ health states but also to detect onset and
monitor progression of some age-related diseases and disorders.
Dawadi et al. found that the overall cognitive and mobility states
of older adults could be predicted from unobtrusively collected
in-home behavior data [12]. For that purpose, they introduced an
algorithm called Clinical Assessment using Activity Behavior
(CAAB) and tested its validity for global cognition (measured by
the Repeatable Battery for the Assessment of Neuropsychologi-
cal Status, or RBANS) and mobility (measured by the Timed Up

and Go, or TUG) using time series-based descriptive statistics
of daily activities. Hayes et al. [13] found Mild Cognitive Im-
pairment (MCI), as measured by the Clinical Dementia Rating
(CDR) and Mini-Mental State Examination (MMSE) tests, to be
correlated with in-home walking parameters and mobility mea-
sures. MCI implies cognitive decline in one or more domains of
cognition (e.g., memory, language, executive function) that is
greater than what could be attributed to normal aging, but does
not meet the threshold for a diagnosis of a dementia disorder
like AD [14].

In related work, Galambos et al. [15] discovered associations
between overall in-home activity and outing patterns with both
dementia and depression, which is also known to be a common
AD symptom. The Geriatric Depression Scale (GDS), as well as
the MMSE and Short Form Health Survey-12 scales were used
to determine subjects’ state. Petersen et al. [16] also found emo-
tional states, specifically mood and loneliness, to be correlated
to outing patterns, whereas they also verified the possibility of
predicting other overall health predictors such as physical ac-
tivity from these data. Austin et al. also predicted the loneliness
of older adults by analyzing behavioral data [17]. A compara-
tive summary of the sample sizes, techniques used, symptoms
predicted, and observed results are given in Table I.

Nonetheless, there’s still much work to do towards the devel-
opment of models to reliably detect AD symptoms from unob-
trusively collected in-home behavioral data. The predictability
of the wide range of multi-modal symptoms of AD is yet to
be analyzed, as well as the contribution of many behavioral
traits to these models. Moreover, the possibility of detecting a
Reliable Change [18] in AD multimodal symptoms from smart
home data is yet to be researched. In addition, solutions have
not been heavily explored to handle imbalanced class distribu-
tions (i.e., a much larger number of negative cases than positive
cases) that are common in such environments. Furthermore,
there are few studies where quantitative detection results have
been given.



This paper aims at filling this research gap. Previous work
has demonstrated the validity of daily behavioral statistics for
the prediction of cognitive and mobility skills of older adults
[12]. Building on this foundation, we will introduce new behav-
ioral features and will analyze their validity for the detection of
reliable changes in multi-modal AD symptoms.

The main contributions of this work can be summarized as
follows. We analyze the predictability of several multi-domain
symptoms often found to be impaired in AD, we analyze the
contribution of behavioral features to the prediction of these
health assessment scores, and we introduce and assess new smart
home-based behavior features to quantify global daily routine.
In addition, we offer an approach to detect a reliable change
in health assessment scores based on unobtrusively collected
behavioral data and to address the accompanying imbalanced
class distribution problem.

II. METHODS

A. Data Collection

First, we unobtrusively collected in-home behavioral data for
older adults living in smart homes in two senior-living commu-
nities and we gathered corresponding biannual neuropsycho-
logical assessment data. This data was collected by the Center
for Studies in Adaptive Systems (CASAS) and the Neuropsy-
chology and Aging Laboratory at Washington State University
(WA, USA). Review and approval by the Washington State Uni-
versity Institutional Review Board was obtained for the study.
Part of this data (n = 18 older adults) was analyzed in previous
work [19]. For this work, a larger sample is available thanks to
a longer monitoring time and to the inclusion of more subjects
in the study.

The current study focuses on cognition, mobility, and mood
(depression) scores (see Table III), which were collected as part
of the biannual assessment and have been found to be affected
by AD [5]. Cognitive abilities of the older adults were mea-
sured by means of the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) [20], the Prospective and
Retrospective Memory Questionnaire (PRMQ) [21] and a Digit
Cancellation test, while mobility was assessed by Timed Up and
Go (TUG) [22] and Arm Curl [23] tests. Whereas the RBANS
is a brief, individually administered battery to measure cogni-
tive decline or improvement across several domains (Immediate
Memory, Visuospatial, Language, Attention and Delayed Mem-
ory), PRMQ is a 16-item self-report measure of prospective and
retrospective memory slips in daily life. The Digit Cancellation
test is a user-friendly assessment of various aspects of prefrontal
cortex functioning (namely, information processing speed, the
ability to focus attention and executive functioning) [24]. TUG
and Arm Curl are physical tests to measure patients’ risk for
falling and upper body strength, respectively. The Geriatric De-
pression Scale - Short Form (GDS-15) [25] was used to assess
the depression level of the participants. The 15-item GDS is the
reduced version of the original 30-item GDS scale, which is a
screening measure used to detect clinical levels of depression
in older adults. A score of 10 or greater is suggestive of clinical
depression.

TABLE II
PARTICIPANTS’ CHARACTERISTICS

Cognitive status Healthy At risk Difficulties

Group Size N = 13 N = 10 N = 6
Age 82.85 (73-92) 86.20 (73-97) 84.50 (82-90)
Education 17.58 (16-20) 17.20 (12-20) 17.67 (16-20)
Gender m = 4, f = 9 m = 3, f = 10 m = 1, f = 5

(m = male, f = Female. Age and Education are Specified by Mean (Range).)

TABLE III
MODALITY, TEST-RETEST RELIABILITY, AND STANDARD DEVIATIONS OF THE

SCORES USED IN THE STUDY

Domain Score rscor e SDscor e Ref.

Mobility Arm Curl 0.96 4.98 [27]
TUG 0.96 3.18 [26]

Digit Cancellation 0.85 37.20 [28]
RBANS:

+total 0.84 15.58 [29]
+attention 0.16 19.00

+delayed memory 0.77 13.29
+immediate memory 0.75 16.58

Cognition / +visuospatial 0.76 15.31
Memory +language 0.33 15.31

PRMQ:
+total 0.89 9.15 [30]

+prospective memory 0.85 4.91
+retrospective memory 0.89 4.98

Mood GDS 0.68 2.20 [31]

The smart home sensor data used for this study was collected
from 2011 through 2016, a period in which the data were col-
lected continuously for durations ranging from <1 month to
60 months (M = 19.95 months, SD = 17.98 months) depending
on the residence. Health assessment data was also collected for
29 of the older adults who were living independently in the smart
homes. Participants were classified as either cognitively healthy,
at risk for cognitive difficulties or experiencing cognitive diffi-
culties. See Table II for group demographic information. Partic-
ipants in the cognitive risk group had lowered performance on
one or more cognitive tests (relative to an estimate of premorbid
abilities), but did not meet criteria for MCI or dementia. One par-
ticipant in the cognitive difficulties group was diagnosed with
a brain tumor with marked reductions in cognition following
diagnosis. The remaining participants in the cognitive difficul-
ties group met criteria for mild cognitive impairment (MCI) as
outlined by the National Institute on Aging-Alzheimer’s Asso-
ciation workgroup [26].

B. Preprocessing

1) Day-Level Behavior Feature Extraction: Smart homes
were set up to collect all sensor events that took place in each
residence during the study period. Each data stream entry de-
scribed a single sensor event in terms of the event’s timestamp,
ID of the sensor detecting the event, and type of event (activa-
tion/deactivation).

Note that, a raw-sensor data entry by itself is meaningless:
the same sensor event can occur when performing different
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Fig. 1. Overview of the research methods. 

activities and multiple occurrences of a specific activity may 

yield different event sequences. Therefore, in order to interpret 

the event data, it was first necessary to assign an activity label to 

each sensor entry, taking into account the context in which the 

sensor event occurred. For that purpose, the AR Activity Recog­
nition algorithm [32] was used. This algorithm maps each of the 

sensor events to a value from a predefined set of activity labels in 

real-time, by applying an adaptive-length sliding window to the 

raw sensor data stream. The predefined set of activities include 

both ambulatory activities (such as mobility inside the home) 

and specific activities of daily living (ADLs), which were en­

coded by numbers from 1 to 12 (i.e., Sleep = 1, Cook= 2, Relax 

= 3, ... , Other = 12). This approach not only takes into account 

recent sensor events but also contextual information such as the 

activity label that was assigned to the previous time window. 

The reliability of this algorithm has been demonstrated in pre­
vious work, where accuracy greater than 98% was achieved on 

30 testbed smart homes using three-fold cross validation [32]. 

Fig. 2 shows an extract of an AR activity labeled sensor data 

stream. 

Once activity-level information was available, we computed 

17 daily behavior features for each subject, explaining their 

daily sleep and mobility patterns, time spent in several specific 

ADLs (e.g., cook, eat) and overall characteristics of their rou­

tines. A detailed list of the computed features can be seen in 

Table IV. 

The daily distance that the subjects traveled inside their homes 

was estimated by computing the distance between areas of the 
home covered by each passive infrared (PIR) motion sensor as 

determined from based on the floor plan and sensor layout (see 

example in Fig. 3). Three of the apartments lacked specific in­

formation about the positioning of the sensors within the bouses. 

In those cases, it was first necessary to estimate the positions of 

the sensors, which was done by considering these apartments 

to be of a similar shape to the rest and checking the activation 

2011-06-18 13:23:16.33 WorkArea WorkArea MOOS ON Work 
2011-06-18 13:23:18.04 WorkArea WorkArea MOOS OFF Relax 
2011-06-18 13:23:18.58 WorkArea WorkArea MOOS ON Relax 
2011-06-18 13:23:24.95 WorkArea WorkArea MOOS OFF Relax 
2011-06-18 13:23:31.53 Kitchen Kitchen MA006 ON Cook 
2011-06-18 13:23:34.53 Kitchen Kitchen MA006 OFF Cook 
2011-06-18 
2011-06-18 
2011-06-18 

13:23:35.46 Kitchen Kitchen MA006 ON Cook 
OFF Cook 
ON Cook 

13:23:37.72 Kitchen Kitchen MA006 
13:23:55.33 Kitchen Kitchen MA006 
13:23:56.45 Kitchen Kitchen MA006 2011-06-18 OFF Cook 
13:24:03.53 Kitchen Kitchen MA006 2011-06-18 ON Cook 

2011-06-18 13:24:05.26 Kitchen Kitchen MA006 OFF Cook 
2011-06-18 13:24:11.08 WorkArea WorkArea MOOS ON Eat 
2011-06-18 13:24:18.59 WorkArea WorkArea MOOS OFF Eat 

2011-07-28 08:40:39.41 Bedroom Bedroom MA007 ON Sleep 
2011-07-28 08:40:41.82 Bedroom Bedroom MA007 OFF Sleep 

2011-07-29 12:22:06.83 WorkArea WorkArea MOOS ON Work 
2011-07-29 12:22:08.69 WorkArea WorkArea MOOS OFF Work 

Fig. 2. Extract of an AR activity-labeled sensor event data stream. 

TABLE IV 

DAY-LEVEL ACTIV ITY FEATURES INCLUDED IN THE STUDY 

Type 

Duration of specific 
activities (6 features) 

Sleep-related (2 features) 
Mobility-related (2 
features) 

Routine-related (7 
features) 

M007 

.r.15007 

nos 

M006 
LS006 

9-MA019 
LS019 

Day-level features 

Time spent per day in coolcing, eating, relaxing, 
and performing persona! hygiene and nighttime 
toileting activities as well as time out of the 
home. 
Daily sleep duration and frequency. 
Total number of activated sensors and total 
distance covered walking inside the home per 
day. 
Complexity of the daily routine, number of total 
and of non-repeated activities perfonned per 
day, maximum and minimum inactivity limes, 
day length and similarity with the previous day. 

MOUn HOl 
LSOU, 1 0001 

LT10 
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L.S?,09 

MA021 
LS021 

Fig. 3. Floor plan and sensor layout of one of the smart home sites. 

order of the sensors in the raw sensor data files. Once ail sensor 
positioning information was available, we computed the daily 

sum of the Euclidean distances between the consecutively­

activated motion sensors in order to estimate the total walking 

distance traveled by the inhabitants. Note that this approach 

only provides an approximation of the real covered distance, as 

it does not consider the existence of walls or other obstacles 

between the sensors that must be avoided or navigated. 



To compute daily-routine features, we first extracted the daily
activity sequence from the AR-labeled sensor data stream. Shan-
non entropy was used to measure the complexity of the daily
routine. To compute this entropy value, we estimated the daily
probability distribution (histogram) of the activity sequence (P)
and then applied the entropy formula shown in Equation 1,

Complexityroutine =
12∑

activ ity=1

Pactiv ity − log2 Pactiv ity

(1)
where Pactiv ity was the probability of a certain activity to occur
for a given day based on the actual day’s histogram.

The same encoded activity sequence was used to compare the
daily routines of consecutive days. For this purpose, we used an
implementation of the “gestalt pattern matching” algorithm [33].
This SequenceMatcher function, available in Python, expresses
the similarity of any two sequences as a value between 0 and
1. We use this function to determine the degree of similarity
between consecutive days. Finally, we checked the timestamps
of the daily activity events and computed the day-length as the
time elapsed between the first and the last detected activity of
the day. The remaining features in Table IV are self-explanatory.

2) Between-Assessments Behavior Statistics’ Computation:
The previous step yielded a set of daily activity features for
each subject. We then applied the CAAB algorithm, which was
introduced earlier [19], using RStudio for R to the daily activity
data in order to extract behavior statistics for each between-
assessment period.

In summary, the CAAB algorithm was used to apply the
following processing steps to the daily behavior data: 1) Take
each subject’s between-assessment daily behavior data (which
was 6 months in length as assessments were performed twice a
year), 2) Apply a log transform and a Gaussian detrending to
each time-series (behavioral variable), 3) Compute five summa-
rizing time-series statistics (variance, skewness, kurtosis, au-
tocorrelation, and change) for each behavioral feature in this
period using a sliding window of length 7 days, and 4) Compute
the 6-month average of each time-series statistic and use the set
of averages for the final predictions.

The resulting preprocessed dataset for further analysis was a
collection of 85 (5 time-series statistics of 17 behavioral fea-
tures) biannual summary behavior statistics for each of 29 older
adults who were living alone in their sensorized apartments for
a period of 24.0 ± 13.68(SD) months.

3) Health Assessment Scores: Our goal is to create predic-
tion models that map smart home-based behavior features to
health assessment values that might capture AD symptoms. In
this study, our target variables are the Arm Curl and TUG mobil-
ity test scores, cognition assessment based on Digit-Cancellation
test, RBANS and PRMQ scores and subscores, as well as de-
pression symptoms represented as GDS test-scores. All these
values were collected from the participants at the end of each
corresponding 6-month period.

Self-reported scores are usually strongly subject dependent.
In addition, two people might achieve different results in the

same test even if they have similar skills, due to their intrinsic
characteristics. As a measure to avoid this inter-subject vari-
ability in the scores, we used a standardization method based on
the Reliable Change Index (RCI) [18] computation. RCI com-
pares assessment scores for each participant at one time point
to previous scores for the participant to determine whether the
participant has undergone a significant change in his/her perfor-
mance. Detecting a significant change implies that the subject’s
scores have changed sufficiently (exceeding a specified thresh-
old) so that the change is unlikely to be due to measurement
unreliability (i.e., due to repeat testing or practice effects). We
looked for two types of reliable absolute changes: the first one
compares each assessment value to the participant’s baseline
values (RCIbaseline ), whereas the second one compares each
assessment point to the same participant’s previous assessment
point (RCIconsecutive ).

In order to calculate the RCIs for the scores used herein, we
gathered test-retest reliability (rscore ) and standard deviation
(SDscore ) values that the tests have shown in their develop-
ment cohorts and/or in previous work, as shown in Table III.
Therefore, the RCIs for each subject were computed as:

RCIbaseline(i) =
Scorei − Scorebaseline√

2SEm
(2)

RCIconsecutive(i) =
Scorei − Scorei−1√

2SEm
(3)

where SEm or Standard Error of Measurement represents the
expected variation of the observed test scores due to measure-
ment error and is computed as SEm = SDscore

√
1 − rscore ,

rscore is the test-retest reliability measuring the consistency of
the test scores over time, Scorei is the test score at assessment
point i, Scorebaseline is the test score at the first/baseline assess-
ment and Scorei−1 is the test score at the previous assessment
point.

Some of the assessment scores result in very few positive in-
stances (data instances where a reliable change was observed),
resulting in highly imbalanced class data. For the following
analyses, we removed from the study those tests which were
extremely imbalanced (<5% of positive instances). We dis-
tinguished the remaining tests as imbalanced (5%–30% of
positive instances) and balanced data (30%–50% of positive
instances).

Additionally, we also considered the possibility of
detecting improvement and decline in test scores among con-
secutive assessment points as a method to reduce inter-subject
variability. Comparing an individual’s score to his/her own pre-
vious one allows us to standardize the results, since it is a
way to evaluate the improvement or decline of each individ-
ual’s skills in the time period under analysis, regardless of the
absolute values of the scores. In this case, the difference be-
tween each consecutive assessment point was computed for
each self-reported test score of each subject. Every data in-
stance with an improvement in the scores (�0) was considered
as a positive point whereas a decline in the performance of the
skill being evaluated by tests (<0) was labeled as a negative
point.



TABLE V
TASK-SPECIFIC GROUPING OF DAILY FEATURES

Group Day-level features

Daily-routine Complexity of the daily routine, number of total
activities and number of non-repeated activities
performed per day, maximum and minimum
inactivity times, day length and similarity with
the previous day

Mobility The total number of activated sensors and the
total distance covered walking inside the
apartment per day

Outings Time spent per day in being out of home
Mobility & outings Mobility + Outings
Sleep The daily sleep duration and frequency
Overnight toileting Time spent per day in nighttime toileting

activities
Overnight patterns Sleep + Overnight toileting
Cook & eat Time spent per day in cooking and eating

C. Cognition and Mobility Change Prediction

The preprocessed dataset was analyzed using Weka [34], a
free machine learning software written in Java. First, we per-
formed a correlation analysis between the mobility, cognition,
and mood assessment scores and the smart home behavior data.
For this purpose, we used four different regression models us-
ing all behavior features computed in the previous step for each
one of the scores. The four models we evaluated were Sup-
port Vector Regression (SVr) with a linear kernel, Linear Re-
gression (LinearR), SVr with a Radial Basis Function (RBF)
kernel and k nearest neighbors (kNN) algorithms. We com-
pared the correlation coefficients (r) and Mean Absolute Errors
(MAE) of the models using 10-fold cross validation (CV) ap-
proach. Corresponding pairwise random algorithms were built
and evaluated in our dataset following the same process. These
random algorithms provided a basis of comparison to ensure
that performance results are not due to chance. The random al-
gorithms were built using a uniformly distributed random data-
matrix of the same size as the real behavioral data while re-
specting each variable’s data range as in the original dataset.
A corrected paired t-test was used to detect a significant im-
provement of smart home-based algorithms in comparison to
the random data algorithms. Adjusted p-values (*p < 0.01,
**p < 0.001) were used to avoid Type 1 error when checking for
significance.

In order to analyze the types of behavior features that are most
correlated with each one of the tests, we built activity-specific
models for the main test scores with a linear SVr and evaluated
the models using 10-fold cross validation. The behavior fea-
tures that were included in each one of the models are shown
in Table V. Again, we searched for statistically significant im-
provement in comparison to pairwise random algorithms using
a corrected paired t-test and adjusted p-values (*p < 0.01, **p
< 0.001).

Regarding RCI detection, we used different approaches for
the imbalanced and balanced datasets. First, balanced datasets
containing all behavioral features were reduced by means of
a Principal Component Analysis (PCA). PCA is a popular
statistical technique based on the projection of the data to a

lower-dimensional subspace, useful for finding patterns in high-
dimensional datasets [35]. Principal Components that explained
95% of the variability in the behavior data were kept to create
the reduced datasets. The SVM, AdaBoost, Multilayer Percep-
tron (MLP) and Random Forest (RF) algorithms were trained
and validated using ten-fold cross validation. Evaluation met-
rics include area under the ROC curve (ROCauc ), area under
the Precision-Recall curve (PRCauc ), Fscore, and sensitivity.
The combination of these metrics offers an excellent overview
of both the models’ overall performance and the capability to
detect the event of interest (the reliable change event), and are
especially suitable when the data distribution is skewed. A cor-
rected paired t-test was used to detect a significant improvement
of smart home-based algorithms in comparison to the pairwise
random data algorithms, and an adjusted p-value (*p < 0.0125)
was employed to avoid Type 1 error.

For the imbalanced datasets, a different approach was re-
quired. Common machine-learning algorithms tend to create
models that are biased towards the majority class when be-
ing applied to imbalanced datasets, resulting in high accuracies
but very low sensitivity. In most of the health-related machine
learning applications, the events in which we are more inter-
ested are the rare events or the minority class, highlighting the
need to use alternative methods to improve the detection of these
minority events. Two algorithmic approaches are tested in the
current work to overcome this issue. The first one, SMOTE-
Boost [36], is a method combining boosting techniques with
SMOTE [37] oversampling techniques. Whereas boosting aims
at creating a “strong” classifier using a set of “weak” classifiers,
SMOTE is a technique that oversample the minority class by
creating synthetic data instances and thus reducing class im-
balance. SMOTEBoost combines these processes iteratively in
order to improve the sensitivity of the models without affecting
the overall accuracy.

The second approach, the wrapper-based Rapidly
Converging Gibbs sampler (wRACOG) [38], is a minority-class
oversampling algorithm based on Gibbs sampling. Unlike
SmoteBOOST and most of the minority-class oversampling
techniques, wRACOG takes into account the underlying
probability distribution of the minority class and the interde-
pendencies of the data attributes when synthetically generating
rare-event samples. This results in a better representation of
the minority class. Moreover, wRACOG learns the models
iteratively, selecting from the Markov chain generated by the
Gibbs sampler the samples that have the highest probability of
being misclassified by a learning model (wrapper) at each step,
often leading to better classification rates. wRACOG stops
iterating when there is no further improvement with respect to
a chosen performance metric.

First, we built prediction models for imbalanced datasets
using SMOTEBoost and kNN with k = 5 as the “weak” clas-
sifier which we validated using 3-fold cross validation. Pair-
wise random algorithms were also built using the previously-
mentioned random data and were validated for prediction of our
data following the same 3-fold CV process. Again, we com-
puted ROCauc , PRCauc , Fscore and sensitivity of the mod-
els. McNemar’s test was applied to check whether a significant



Fig. 4. Chow-Liu tree for the PCA-reduced dataset. 

irnprovement (for an adjusted p-value (*p < 0.005)) was ob­

served using smart home-based prediction of reliable change in 

the scores in comparison to random data algorithms. 

Next, we built the prediction models for the same imbal­

anced datasets following the second approach, i.e., using the 

wRACOG algorithm. For this purpose, it was first necessary to 

discover the interdependencies of the data attributes. In order 
to reduce the dimensionality of the data and to make it easier 

to map the interdependencies between the attributes, we used 
the PCA-based reduced datasets explaining the 95% of the data 

variance. Moreover, wRACOG assumes that the data attribute 

values are categorical, so we first discretized all of the principal 

components (PCs) into five uniform bins. We then constructed 

the Bayesian tree of dependencies following the Chow-Liu algo­
rithm in Weka. The Chow-Liu algorithm [39] aims at construct­

ing a maximal weighted spanning tree in a graph, allowing each 

attribute to have exactly one parent on which its value depends. 

Thus, the interdependencies between the PCs were discovered. 

Fig. 4 shows the Chow-Liu interdependency tree for the PCA­

reduced and discretized baseline dataset. 
A kNN algorithm was used as the wrapper classifier and two 

different stopping criteria for the iterative process were tested: 

1) First, as in many applications where the detection of the

reliable change rnight be critical, we searched for the maximum

sensitivity of the models. 2) Second, for cases where the overall

prediction ability of the models rnight be more interesting, we

used the maxirnized ROCauc metric as the stopping criteria

for the algorithm. A 5-fold CV was performed for validation

purposes and ROCauc , PRCauc , Fscore, and sensitivity of
the models were evaluated. As in previous cases, in order to

check for statistically significant smart home-based prediction

of reliable change in the scores, we compared mode! outputs
to those of their pairwise random algorithms by means of a

McNemar's test. An adjusted p-value (*p < 0.005) was used to

avoid farnily-wise (Type 1) error rate. The PCA-reduced random

dataset was discretized following the same process as the actual

smart home dataset.

Finally, for the detection of a person's irnprovement/decline 

from smart home data, we used the PCA-based reduced dataset 
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Fig. 5. Regression results for the absolute test scores using ail behav­
ioral features based on 10-fold CV (statistically significant improvement 
for r (adjusted ·p < 0.01,"p < 0.001) and for MAE (tp < 0.01, tlp < 
0.001) in comparison to the corresponding pairwise random algorithm)). 
Bars represent r and lines represent MAE. 

as in the previous case. The SVM, AdaBoost and RF algorithms 

were trained and validated following a 10-fold CV approach 

to discrirninate the positive class (a score improvement)) from 

the negative class (a score decline). ROCa
uc, PRC

auc , and 

F score were computed for each one of the algorithms and 

compared to the values of their pairwise-random algorithms. 
As the detection of a decline in self-reported skill performance 

rnight be more important than the detection of an improvement, 

we also computed the sensitivity of the algorithms towards these 

negative events. Ail statistical significances were checked for 

adjusted p-values (*p < 0.01, .. p < 0.001). Fig. 1 provides an 

overview of the research methods. 

Ill. RESULTS 

A. Absolute Test Scores' Prediction

Fig. 5 shows the results of predicting the absolute test scores

using ail smart home behavioral features with regression learn­
ers. For mobility tests, whereas Arm Curl had low correlation 

with behavioral data, TUG demonstrated a moderate to strong 

correlation. For the cognition overall scores and subscores, the 

measures showed mostly moderate correlations with behavioral 

data. Exceptions included the visuospatial and immediate mem­

ory subscores of the RBANS test and the digit cancellation test 

scores, which were found to correlate wealdy. In fact, the digit 

cancellation test didn't show any statistically significant im­

provement compared to random models, whose MAE is also 
the highest. Finally, depression showed a weak correlation with 

the global set of smart home behavioral data. 

Regressions based on specific activities, which can be seen 
in Fig. 6, showed some interesting results. The Arm Curl mo­

bility test showed weak but statistically significant correlations 

with outings, and cooking and eating features. In contrast, the 

TUG test showed significant moderate correlations with daily 

routines, ovemight toileting and the combination of ovemight 

toileting and sleep, as well as a significant weak correlation with 

cooking and eating features. 
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feature type based on 10-fold CV (statistically significant improvementfor 
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to the corresponding pairwise random algorithm)). Bars represent r and 
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Regarding the self-report questionnaire, the global PRMQ 

score was moderately associated with daily routine and with 
the overnight patterns, as well as weakly correlated with sleep 

and overnight toileting. RBANS was moderately correlated with 

overnight patterns, whereas it was also showing weak yet sta­

tistically significant correlations with mobility, daily routine, 

and overnight toileting behaviors. Digit Cancellation process­

ing speed was found to be moderately correlated with sleep and 

overnight patterns, and weakly yet significantly correlated with 

overnight toileting features. 

Finally, for the geriatric depression assessment, we did not 

find any significant correlations but we perceived a significant 

reduction of the MAE of the models for mobility alone as well 
as for the mobility, outings, and sleep feature sets. 

The overview of the trends shows that sleep and overnight 

behavior patterns, together with daily routine features presented 

in this paper, are the behavioral features that contribute the most 

to the prediction of the several health assessments. 

B. RCI Detection

The detection of reliable change on attention and language

skills were excluded from our objectives due to the uncertainty 

that their low test-retest reliability would introduce in the results 

obtained for these labels. Global PRMQ and subscores, consec­

utive global RBANS scores, RBANS subscores related to imme­

diate memory, Digit cancellation, and the GOS test score were 

excluded from the RCI detection analyses as they were captur­

ing Jess than 5% of the reliable change instances. Among the 

remaining labels, only the reliable change in Arm Curl scores 

from baseline had enough positive instances to be considered 
a balanced dataset. The remaining scores (RBANS, RBANS 

delayed memory, RBANS visuospatial and TUG change from 

baseline, and RBANS delayed memory, RBANS visuospatial 

and TUG change between consecutive assessments) were con­

sidered imbalanced and were processed as such. 

Table VI shows the results for Arm Curl reliable change 

detection from baseline using 37 PCs explaining the 95% 

ROCauc PRCauc Fscore Sens. 

RF 0.58 0.13• 0.11· 0.92• 
SVM 0.59 0.69. 0.11· 0.89. 
AdaBoost 0.64 0.76. 0.76. 0.84· 
MLP 0.58 o.1s• 0.69. 0.11· 

"Statistically Significant lmprovement (Adjusted p < 0.0125) in 
Comparison to the Corresponding Pairwise Random Algorithm. Ali 
algorithms can build statistically significant prediction models, but 
the RF algorithm beats the rest in terms of F score and Sensitivity, 
with similar P RCauc. 

TABLE VII 
RELIABLE CHANGE DETECTION OF THE IMBALANCED SCORES USING 

SMOTEBOOST 

RB AN Sbaseline: 
+ total 
+ delayedmemory 
+ visuospatial 
TUGbaseline 
ArmCurlconsecutive 
REAN Sconsecutive: 
+ delayedmemory 
+ visuospatial 
TUGconsecutive 

ROCauc PRCauc Fscore Sens. 

0.52 0.05 0.00 0.00 
0.69 0.18 0.31 0.50 
0.45 O.D9 0.08 0.08 
0.48 0.17 0.06 0.11 
0.40 0.18 0.13 0.12 

0.40 0.03 0.00 0.00 
0.68 0.20 0.35 0.50 
o.s6• 0.22· o.1s• o.so• 

"Statistically Significant lmprovement (Adjusted p < 0.005) in Comparison to 
the Corresponding Pairwise Random Algorithm. Only TUGconsecutive shows 
predictability. 

variability of the data. Ali four classifiers demonstrated a statis­

tically significant improvement in terms of Area under the PR 

curve, Fscore and sensitivity for the adjusted p-value, whereas 

area under the ROC curve showed reasonable results surpassing 

the 0.6 barrier. 

Table VII summarizes the results for the prediction models for 

the irnbalanced datasets that are sampled based on the SMOTE­
Boost algorithm. McNemar's tests for an adjusted p-value of 

0.005 found significant irnprovement of the smart home-based 

prediction compared to random classifiers for the reliable change 

detection between consecutive assessments of TUG-based mo­

bility. However, and even having used a method to overcome 

class-irnbalance, models still remain biased and lacking in 

sensitivity. 

Table VIII shows the results of the RCI detection models 

based on the wRACOG algorithms for the imbalanced datasets, 

using the sensitivity maxirnization as the criteria for the algo­

rithm to stop. Compared to previous SMOTEBoost based algo­

rithms, the sensitivity of the models is highly improved, which 
rnight be very interesting for some applications. However, some 

models' ROCauc values lie below 0.5 and their P RCauc is also 

low, which rnight again be an indicator of a biased mode!. In 

this case, the bias is towards the rninority class. McNemar's tests 

for an adjusted p-value of 0.005 only found enough statistical 

significance to accept predictability of delayed memory skills 

between consecutive assessment points. 



TABLE VIII
RELIABLE CHANGE DETECTION OF THE IMBALANCED SCORES USING
WRACOG AND SENSITIVITY MAXIMIZATION AS STOPPING CRITERIA

FOR THE ALGORITHM

ROCau c P RCau c F score Sens.

RBANSbaselin e

+ total 0.72 0.07 0.09 1.00
+ delayedmemory 0.63 0.10 0.13 0.60
+ visuospatial 0.72 0.20 0.21 1.00
T UGbaselin e 0.52 0.21 0.32 0.84
ArmCurlcon secu tiv e 0.54 0.22 0.40 0.83
RBANScon secu tiv e

+ delayedmemory 0.69* 0.06* 0.11* 0.80*

+ visuospatial 0.52 0.09 0.17 1.00
T UGcon secu tiv e 0.48 0.18 0.35 0.96

*Statistically Significant Improvement (Adjusted p < 0.005) in Comparison to
the Corresponding Pairwise Random Algorithm). Only RBAN Sb a s e l i n e −
delayedmemory subscores show predictability.

TABLE IX
RELIABLE CHANGE DETECTION OF THE IMBALANCED SCORES USING

WRACOG AND ROCau c MAXIMIZATION AS STOPPING CRITERIA FOR THE
ALGORITHM

ROCau c P RCau c F score Sens.

RBANSbaselin e

+ total 0.77 0.07 0.17 1.00
+ delayedmemory 0.66 0.10 0.19 1.00
+ visuospatial 0.64 0.14 0.20 0.23
T UGbaselin e 0.51 0.17 0.39 0.60
ArmCurlcon secu tiv e 0.62* 0.22* 0.49* 0.63*

RBANScon secu tiv e

+ delayedmemory 0.67 0.03 0.08 1.00
+ visuospatial 0.53 0.09 0.19 0.80
T UGcon secu tiv e 0.59 0.18 0.29 0.48

*Statistically Significant Improvement (Adjusted p < 0.005) in Comparison to the
Corresponding Pairwise Random Algorithm. Only ArmC urlc o n s e c u t i v e shows
predictability.

Table IX shows the results of the RCI detection models based
on the wRACOG algorithms for the imbalanced datasets, us-
ing the ROCauc metric as the stopping criteria for the iterative
algorithm. The sensitivity of the models using this second ap-
proach is, overall, higher than the SMOTEBoost-based models
and lower than the models presented in Table VIII. Interest-
ingly, in some cases the areas under the ROC and PR curves,
as well as the Fscores, are greater than the ones obtained with
the previous approaches. This suggests a better suitability of the
wRACOG based models maximizing ROCauc for some of the
RCI detection problems. After controlling for the p-value to re-
duce the family-type error rate, only the model for the detection
of reliable changes on consecutive Arm Curl mobility scores
was showing a statistically significant prediction ability.

C. Detection of Improvement/Decline in Cognition &
Mobility Skills

Table X shows the results of detecting mobility and cog-
nition score improvement/decline. After adjusting the p-value
for a reduced family-wise error rate (*p < 0.01,**p < 0.001),
only the detection of improvement and decline in mobility as

measured by the Arm Curl test seemed to be possible. A signif-
icant improvement both in ROCauc and PRCauc values was
detected using RF and AdaBoost classifiers in comparison to
their pairwise random data classifiers, as well as a significant
improvement in Fscore and sensitivity of the RF-based model.

IV. DISCUSSION

The problem addressed in this work is not an easy task to
solve. Our goal was to predict the multi-modal symptoms com-
monly seen in AD from unobtrusively-collected behavior data
in smart homes with older adults residents. Despite the com-
plexity of the task, our results show that measures of cognition,
mobility, and depression are predictable using activity-labeled
smart home data.

A regression analysis of the smart home-based behavior data
with all the tests under analysis has shown several moderate
yet significant correlations. As expected, behavior data were
the most correlated to mobility assessment scores, followed by
cognitive skills, whereas the most difficult task seems to be mood
prediction. Nonetheless, almost all models, with the exception
of cognition level prediction based on Digit Cancellation scores,
showed a significant improvement compared to models based
on random data.

The feature selection analysis has brought to light such valu-
able information as the predictability of mobility scores from
outing patterns, daily routine, and patterns of cooking and eat-
ing. In the specific case of TUG scores, there was a significant
correlation with global overnight activities including bed-to-
toilet transitions. This finding suggests that individuals who
take longer to complete the TUG (indicative of slowed move-
ment) tend to be more active at night. This is supported by the
AD literature that finds both impaired mobility and sleep distur-
bances to be related to dementia [40], [41]. In [12], TUG showed
significant correlations with mobility, outings, sleep and ADL
(cook, eat, relax and personal hygiene activities) features.

While we did not observe statistically significant predictabil-
ity based on outings, mobility and sleep after adjusting the p-
value for reduced family-wise error rate, we did based on global
daily routine patterns, which were not analyzed previously, and
for cooking and eating activities, which likely reflect part of
the ADLs of the previous work. Cognition was mainly corre-
lated to sleep and overnight patterns, but also to daily routine,
mobility, and outings. These results also agree with previous
work [12], where correlations between total RBANS scores and
smart home activity data were analyzed and statistical signifi-
cance for sleep, mobility, outings, and ADLs was found. Also
in agreement with these results, sleep and sleep-related distur-
bances have been found to be related to cognitive impairment
in other research [42], [43], as well as time spent out of home
to cognitive state as measured by the Clinical Dementia Rating
(CDR) scale [16].

Finally, yet lacking statistical significance for the correlation
scores, depression assessed with the GDS scale was found to
be predictable based on mobility, outings, and sleep features.
This agrees with previous work [15] where correlation of GDS
scores with overall in-home mobility and outing patterns was



TABLE X
POSITIVE AND NEGATIVE FLUCTUATION DETECTION BETWEEN CONSECUTIVE ASSESSMENT POINTS

RF SVM AdaBoost

ROCau c P RCau c F score Sens. ROCau c P RCau c F score Sens. ROCau c P RCau c F score Sens.

Mobility

Arm Curl 0.65** 0.54** 0.33* 0.28* 0.60 0.38 0.38 0.34 0.59** 0.47** 0.36 0.36
TUG 0.41 0.49 0.38 0.39 0.46 0.45 0.45 0.48 0.45 0.49 0.46 0.50

Cognition

PRMQ 0.54 0.47 0.29 0.25 0.56 0.38 0.39 0.35 0.51 0.45 0.41 0.43
Prospective Memory 0.58 0.44 0.26 0.21 0.50 0.31 0.19 0.16 0.58 0.42 0.35 0.37
Retrospective Memory 0.55 0.44 0.22 0.18 0.60 0.40 0.41 0.35 0.55 0.44 0.22 0.18
RBANS 0.38 0.46 0.31 0.29 0.39 0.44 0.21 0.19 0.36 0.42 0.32 0.35
Attention 0.54 0.55 0.39 0.35 0.56 0.49 0.44 0.39 0.53 0.56 0.44 0.46
Delayed Memory 0.58 0.53 0.34 0.27 0.48 0.40 0.18 0.15 0.55 0.48 0.35 0.35
Immediate Memory 0.50 0.51 0.37 0.34 0.43 0.42 0.20 0.18 0.51 0.48 0.38 0.45
Language 0.48 0.50 0.32 0.30 0.47 0.44 0.26 0.23 0.51 0.49 0.31 0.33
Visuospatial 0.48 0.51 0.32 0.30 0.57 0.52 0.43 0.39 0.43 0.48 0.35 0.36
Digit Cancel - Speed 0.44 0.45 0.28 0.25 0.51 0.43 0.36 0.32 0.43 0.43 0.32 0.34

*Statistically Significant Improvement (Adjusted *p < 0.01, **p < 0.001) in Comparison to the Corresponding Pairwise Random Algorithm. Only predictions of fluctuations in Arm
Curl scores based on RF and AdaBoost algorithms show statistically significant predictability.

discovered. Trends showing that sleep and overnight behavior as
well as daily routine features contribute most to the prediction
of several health assessments are also consistent with behavior
literature [42]–[45]. Thus, our results validate those reported
in the literature, in addition to analyze in greater detail each
aspect of mobility and cognition skills thanks to the use of
more tests and their subscores. Part of the data used for these
correlation analyses overlaps with the data used previously (n =
18) [12], so similar conclusions would be expected. Nonetheless,
we have reaffirmed and given more strength to most of those
conclusions by including data collected over a longer period and
from more subjects (i.e., using a bigger sample size), as well as
discovering new correlations with daily routine patterns. In fact,
the novel overall daily-routine features presented in this paper
showed predictability both for mobility and cognition skills of
the elderly.

Regarding reliable change detection, we see that activity-
labeled smart home data can actually be used to build quite
accurate models when a complete and balanced dataset is avail-
able. This is the case for the Arm Curl test change from baseline,
which has been seen to be predictable in a quite accurate manner
and with a high sensitivity. We verified in all four models built
for this reliable change prediction that the use of smart home
activity data significantly contributes to the detection of such
events. Unfortunately, a balanced dataset was not available for
all cases. Despite that problem, by applying the SMOTEBoost
technique to overcome class imbalance, we were able to demon-
strate that consecutive reliable change on mobility measured by
TUG test is predictable using smart home activity labeled data.
A McNemar’s test with an adjusted p-value has supported this
hypothesis, yet we are aware that the model lacks sensitivity to
be considered a final model. The use of the wRACOG algorithm
has resulted in some models with better prediction characteris-
tics: improved sensitivity and ROCauc , PRCauc and Fscores
were found in some cases. Changes in consecutive Arm Curl

and delayed memory scores also showed enough statistical sig-
nificance compared to random classifiers in a McNemar’s test
to be considered reliably predictable from smart home data.

Now that we know that behavioral data can be used to at least
automatically assess changes in mobility and memory skills,
we can keep collecting more longitudinal data to create better
models in the future. This might also result in the discovery
of other significant associations. Note that these results were
also achieved by using all the behavioral features, whereas a
feature-selection process can also help in improving them. Fur-
thermore, we used a kNN algorithm as the wrapper model for the
wRACOG approach, but other algorithms can also be consid-
ered and might improve the results. Maximization of PRCaucs
of Fscores could also be tested as stopping criteria for the
iterative process, possibly leading to different conclusions.

Analysis of the ability to detect changes in cognitive and
mobility skills has demonstrated the possibility of predicting a
decline or an improvement in a person’s mobility as measured
by the Arm Curl test. This not only confirms the results of the
previous RCI analysis, where we saw that reliable changes in
the Arm Curl tests were detectable by smart home activity-
labeled data but also adds value to the results suggesting that
the direction of the change is also predictable. Literature also
supports the idea of the relationship between Arm Curl test
scores and ADLs [23]. This finding may prove useful not only
to monitor the progress of a disorder like dementia but also to
closely examine individuals who are undergoing rehabilitation.

None of the other tests showed enough evidence of pre-
dictability after adjusting the significance level. There are sev-
eral contributing factors to the difficulty of this task. On one
hand, in this case, we were considering all fluctuations as labels
(either positive or negative) without considering their magnitude
or without taking into account their reliability (i.e., not only re-
liable changes were considered but all changes). This might
have included “noise” in the dataset by considering changes



that might have appeared due to reasons other than an actual
change in the skills (such as low reliability on tests), making the
classification task more difficult. On the other hand, the time-
series statistics that we were extracting from the smart home
behavior data do not necessarily reflect a positive or negative
change in behavior, but an absolute change.

V. CONCLUSION

In summary, this work has demonstrated the possibility of pre-
dicting mobility, cognitive, and mood-related symptoms from
unobtrusively collected in-home behavior data. We believe that
the results shown herein are of high relevance, as they suggest
the possibility of implementing a system that could bring huge
benefits to our aging society. The models shown in this paper
are early models aimed at demonstrating the feasibility of such
a system and providing insight into the behavioral features that
might be used for this purpose.

Completion and improvement of the results shown in this
paper must be done by collecting more data and by applying
algorithmic solutions that might better adapt to the imbalanced
detection problems posed herein before their implementation
in real-world settings. Collecting more data will also be useful
to have a complete dataset with confirmed cases of transition
from healthy state to cognitively impaired, which is necessary to
build accurate prediction models. Thus, future work will focus
on continued collection of data for further analysis, designing
and testing more suitable algorithms for imbalanced datasets,
and performing a more in-depth feature selection analysis in
order to improve the sensitivity of the models shown herein,
without the overall accuracy of the models being affected.
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