OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Catalytic Ozonation of Toluene Using Chilean Natural Zeolite: The Key Role of Brønsted and Lewis Acid Sites

Alejandro-Martín, Serguei and Valdés, Héctor and Manero, Marie-Hélène and Zaror, Claudio A. Catalytic Ozonation of Toluene Using Chilean Natural Zeolite: The Key Role of Brønsted and Lewis Acid Sites. (2018) Catalysts, 8 (5). 1-12. ISSN 2073-4344

[img]
Preview
(Document in English)

PDF (Publisher's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3MB

Official URL: https://doi.org/10.3390/catal8050211

Abstract

The influence of surface physical-chemical characteristics of Chilean natural zeolite on the catalytic ozonation of toluene is presented in this article. Surface characteristics of natural zeolite were modified by acid treatment with hydrochloric acid and ion-exchange with ammonium sulphate. Prior to catalytic ozonation assays, natural and chemically modified zeolite samples were thermally treated at 623 and 823 K in order to enhance Brønsted and Lewis acid sites formation, respectively. Natural and modified zeolite samples were characterised by N2 adsorption at 77 K, elemental analysis, X-ray fluorescence, and Fourier transform infrared (FTIR) spectroscopy, using pyridine as a probe molecule. The highest values of the reaction rate of toluene oxidation were observed when NH4Z1 and 2NH4Z1 zeolite samples were used. Those samples registered the highest density values of Lewis acid sites compared to other samples used here. Results indicate that the presence of strong Lewis acid sites at the 2NH4Z1 zeolite surface causes an increase in the reaction rate of toluene oxidation, confirming the role of Lewis acid sites during the catalytic ozonation of toluene at room temperature. Lewis acid sites decompose gaseous ozone into atomic oxygen, which reacts with the adsorbed toluene at Brønsted acid sites. On the other hand, no significant contribution of Brønsted acid sites on the reaction rate was registered when NH4Z1 and 2NH4Z1 zeolite samples were used

Item Type:Article
HAL Id:hal-01927727
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Other partners > Universidad de Concepción - UDEC (CHILE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Other partners > Universidad del Bío Bío - UBB (CHILE)
Other partners > Universidad Católica de la Santísima Concepción - UCSC (CHILE)
Laboratory name:
Statistics:download
Deposited By: Loetitia MOYA
Deposited On:20 Nov 2018 08:53

Repository Staff Only: item control page