OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author’s version published in: http://oatao.univ-toulouse.fr/20845

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Design of a hybrid leaching process for mineral carbonation of magnesium silicates: learnings and issues raised from combined experimental and geochemical modelling approaches

Carine Julcour1, Florent Bourgeois1, Laurent Cassayre1, Julien Leclaire2, Solène Touzé3, Martin Cyr4, France Bailly5

1LGC, Toulouse, France; 2ICBMS, Villeurbanne, France; 3BRGM, Orléans, France; 4LMDC, Toulouse, France; 5CNRT, Nouméa, France
I. INTRODUCTION

Worldwide potential of MC (GIS)
Examination of MC mechanisms
Proof of concept of selected MC route
Environmental assessment (LCA)

New-Caledonia as prime candidate for MC deployment

Potential of Ni slags for MC hybrid process
Balance analysis for two metallurgy plants

Bench-scale continuous pilot
Valorisation route for MC products

CO₂ EMR
Collaborative work

CO₂ Enhanced Metal Recovery
Ex-situ Mineral Carbonation pathways

I. INTRODUCTION

Direct Carbonation (single step)
- Gas-solid
- Aqueous
- No additives < 50% yield
- With additives Up to 85% yield (1h)

Indirect Carbonation (2/multi-steps)
- Gas-solid
- Aqueous with additives 60-80% yield

Other approaches (brines, biomineralization ...)
- Limited resources OR Low process maturity

Flexible approach (pH-swing)
→ Separate formation of silica & carbonates
But regeneration of acids/bases required
→ Higher energy penalties: 50-360%*

Not so simple an approach
Valorisation routes required for solid mixture (M traces?)
Net energy penalties: 50-220%*

Adapted from Sanna et al. (2014)
*based on < 2010 literature routes for 154 MWe coal-fired power plant producing 1Mt-CO₂/yr

High T, slow kinetics for natural ore
I. INTRODUCTION

Studied MC pathways

Direct Carbonation (single step)

Aqueous

No additives < 50% yield

With additives Up to 85% yield (1h)
I. INTRODUCTION

Surface leach layer & mechanisms

![Graph showing extraction yield over time with different layers: surface reaction controlled, diffusion controlled, passivated, ash layer, Phyllosilicate layer.]

- **Passivating** → No carbonate
 - Initial olivine
 - Phyllosilicate layer
 - FIB cross-sections of olivine particle after leaching (TEM) (Bodenan et al., 2014)

- **Diffusion controlling**
 - Carbonation yield < 10% (90 g/L, 95 h)
 - Initial olivine
 - Silica + iron oxide layer
 - 3 g/L (< 100µm), 20 bar CO₂, 120°C

3 g/L (< 100µm), 20 bar CO₂, 120°C

90 g/L (< 100µm), 20 bar CO₂, 180°C
Studied MC pathways

Direct Carbonation (single step)

Aqueous

No additives
< 50% yield

With additives
Up to 85% yield (1h)

EXPERIMENTAL METHODOLOGY
II. EXPERIMENTAL METHODOLOGY

Ores

Serpentinisation degree up to 90%

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
<th>Dominating phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harzburgite (Hz1)</td>
<td>New Caledonia</td>
<td>Serpentine (~90%) >> olivine > orthopyroxene</td>
</tr>
<tr>
<td>Harzburgite (Hz2)</td>
<td>New Caledonia</td>
<td>Serpentine (~90%) >> olivine > orthopyroxene</td>
</tr>
<tr>
<td>Wherlite (We)</td>
<td>New Caledonia</td>
<td>Serpentine (~50%) > olivine > clinopyroxene</td>
</tr>
<tr>
<td>Lherzolite (Lz)</td>
<td>France (Pyrenees)</td>
<td>Serpentine (~50%) > olivine > clinopyroxene</td>
</tr>
<tr>
<td>Olivine</td>
<td>Austria (Magnolithe)</td>
<td>Synthetic olivine (from high T dunite processing)</td>
</tr>
</tbody>
</table>

30.8 < MgO < 47.4%, 39.3 < SiO₂ < 46.3%, 7.3 < Fe₂O₃tot < 9.8%, 0.2 < CaO < 5.0%, 0.2 < Al₂O₃ < 4.0%
II. EXPERIMENTAL METHODOLOGY

Slags

From Ni pyrometallurgy plant (Koniambo)
KNS slowly cooled under ambient conditions, SLN quenched by seawater

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
<th>Dominating phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNS</td>
<td>New Caledonia</td>
<td>Pyroxene: proto-enstatite, clinoenstatite, forsterite</td>
</tr>
<tr>
<td>SLN</td>
<td>New Caledonia</td>
<td>Vitreous fraction >> olivine</td>
</tr>
</tbody>
</table>

MgO ~ 30%, SiO₂ ~ 52%, Fe₂O₃tot ~ 13%, CaO < 0.5%, Al₂O₃ ~ 2%
Solid preparation

- **Grinding** (4h in ball mill) & **sieving** < 100 µm

- **Mechanical sampling**

- **Initial particle size distribution**

 - **Ores**
 - 8-20% < 5 µm

 - **Ni slags**
 - 8-16% < 5 µm
II. EXPERIMENTAL METHODOLOGY

Carbonation set-up & procedure

• 300 mL autoclave reactor
• Controlled atmosphere (P_{CO2}) and T
• Gas auto-dispersing stirrer (800 rpm)
• Continuous recording of CO\textsubscript{2} consumption (24 h)

Solid phase
- Identification of solids formed: SEM(TEM)/EDX and elemental mapping (Mg, Si, O), X-Ray Diffraction, Raman and IR (DRIFT) Spectroscopy, ICP/AES (after acid dissolution)
- Quantification of carbonated products: elemental analysis (C content), ThermoGravimetry Analysis coupled with IR

Liquid phase
- Quantification of dissolved elements: ICP/AES (Mg, Si, Fe), inorganic carbon

Laser diffraction analysis
Filtration (0.2 µm)

drying (70°C)
Studied MC pathway

- Direct Carbonation (single step)
 - Aqueous
 - With additives: Up to 85% yield (1h)
 - No additives: < 50% yield

CHELATING AGENT APPROACH
States of the art

- Effect of organic polyacids on dissolution rate

- Oxalate-enhanced dissolution rate

\[r = \left(\frac{1 + \beta K x a_{ox}}{1 + K x a_{ox}} \right) r_{H^+} \]

\[\approx 7 \] at 0.1 M oxalate (olivine, pH 5, 120°C)

Prigioibe & Mazzotti (2011)

Olsen & Rimstidt (2008)
Significantly improved extraction yield with oxalate at 3 g/L, but formation of solid by-product: **glushinskite** (MgC$_2$O$_4$.2H$_2$O)

Any compromise between glushinskite precipitation & Mg carbonation?
III. CHELATING AGENT APPROACH

Oxalate-enhanced dissolution of olivine: effect of slurry concentration

- **Mg speciation after 24h**
 - 120°C, 20 bar CO₂, olivine < 100 µm, speciation after cooling

- Carbonates
- Glushinskite
- Olivine
- Solution

- Carbonation yield < 1% → not a viable option in these conditions
- Could geochemical modeling predict such competing effects?
Shrinking particle model

\[
\frac{dn_i}{dt} = -r \cdot SSA_{0i} \cdot m_{0i} \left(\frac{n_i(t)}{n_{i0}} \right)^{2/3}
\]

\[
r = \left(\frac{1 + \beta K_x a_{ox}}{1 + K_x a_{ox}} \right) r_{H^+}
\]

\[
r_{H^+} = k_0 \cdot \exp(-E_a/RT) \cdot a_{(H^+)}^n (1-10^{5l})
\]

Rate-limiting step: ore dissolution (instant. gas absorption & solid precipitation)

~20 size classes \((SSA_{0i}, m_{0i})\) generated from Rosin Rammler PSD model

III. CHELATING AGENT APPROACH

Oxalate-enhanced dissolution of olivine: kinetic modeling

surface reaction rate from Prigioobbe & Mazzotti (2011)
Oxalate-enhanced dissolution of olivine: geochemical modeling (with CHESS)

Issues:
- Mg-oxalate species missing in used thermodynamic database (CTDP)
- Glushinskite equilibrium data only available at 25°C
 → dedicated precipitation experiments at 120°C & database updating

![Graph showing extraction yield over time](image)

Simulation with CHESS code (van der Lee, 2007)
- 120°C, 20 bar CO₂,
- 3 g/L olivine < 100 µm
- after estimation of precipitation rate constants for silica & talc

Bonfils et al. (2012)
- Good agreement with experimental data at 3 g/L
 → chemical controlled reaction
Oxalate-enhanced dissolution of olivine: geochemical modeling (with CHESS)

Issues:
- Mg-oxalate species missing in used thermodynamic database (CTDP)
- Glushinskite equilibrium data only available at 25°C
- → dedicated precipitation experiments at 120°C & database updating

- Good agreement with experimental data at 3 g/L
 → chemical controlled reaction
Organic polyacid salts (oxalate, citrate, EDTA): too strong Mg binders for MC at moderate P_{CO_2}

Alternative option: silica(te) layer modulation / impeding by ligands

Exhaustive analysis of both liquid & solid products = MANDATORY

Geochemical modeling as a valuable tool to predict effect of all inputs, but
* careful selection & analysis of thermodynamic database required
* going from & to experimental data needed

Oxalate

Carbonation yield increased from 9.6% after 95 h (water) to 14.5% after 75 h (0.5 M catechol)

Catechol

but might be ore-sensitive (complexation with Fe, Al ...)

Si-catechol complex

(Barnum, 1970; Russo-Mascioli, 2001)
Studied MC pathways

Direct Carbonation (single step)

Aqueous

No additives
< 50% yield

With additives
Up to 85% yield (1h)
Studied MC pathways

Direct Carbonation (single step)

Aqueous

COUPLED ATTRITION-CARBONATION APPROACH

No additives
< 50% yield

> 50% yield?

With additives
Up to 85% yield (1h)

Continuous removal of ash layer

Physical exfoliation

Insensitive to ore type, no need for chemicals
IV. COUPLED ATTRITION-CARBONATION APPROACH

State of the art

- **High power ultrasound**

 Santos et al., 2011-2013; McKelvy et al., 2004; Park & Fan, 2004

 Can be operated at moderate P (< 10 bar), but dampened under high T (> 50 °C)
 → mainly in a sequential process
 ➢ Mixed results

- **Fluidized bed with grinding medium**

 Park & Fan, 2004

 Might be difficult to control (density and/or size differences between reactive & inert particles), limited amount of grinding medium (20 wt.%)
 ➢ Some improvement of ore dissolution

- **Stirred tank with abrasive particles**

 Chizmeshya et al., 2007

 ➢ Enhanced carbonation yield (with quartz particles up to 60 wt.%)
Advantages:
✓ proven technology at large scale
✓ slurry conc.: up to 40%
✓ feed PSD: from μm to mm size range
✓ operability under high T & high P
✓ scalability from 4 L to 50 m³

Issues:
- (long-term) exfoliation efficiency?
 - significant carbonation yield?
 - within a reasonable solid residence time?
- passivation layer attrition vs. breakage of ore particles?
 - energy efficiency: matching attrition process with passivation process?
Proof of concept

Grinding media: 90 mL of 1-2 mm beads + 80 mL of slurry (90-250 g/L) – \(\omega = 800 \text{ rpm} \)

1.3 mm alumina beads

1.6 mm stainless steel (SS) beads

1.25-1.6 mm sand particles (99% SiO\(_2\))

IV. COUPLED ATTRITION-CARBONATION APPROACH

Carbonation tests

- **Reference case**
 - Carbonation only

- **Two-step process**
 - Attrition, followed by carbonation

- **Hybrid process**
 - Coupled attrition-carbonation process
IV. COUPLED ATTRITION-CARBONATION APPROACH

Proof of concept

Ores

- Significant extent of carbonation (vs. < 8% in 24 h without attrition)
- Almost insensitive to ore type
- Noticeable influence of grinding medium

Slags

- Significant extent of carbonation (vs. < 8% in 24 h without attrition)
- Almost insensitive to ore type
- Noticeable influence of grinding medium

Extent of carbonation for different ore types (180°C, 20 bar CO₂, ore conc.: 90 g/L, 1-2 mm Al₂O₃ — or SS grinding media —)

Extent of carbonation for different slag types (180°C, 20 bar CO₂, ore conc.: 90 g/L, 1-2 mm sand — or SS grinding media —)
IV. COUPLED ATTRITION-CARBONATION APPROACH

Proof of concept

Size effect only?
Size effect only?

- Proof of synergy between attrition and leaching

IV. COUPLED ATTRITION-CARBONATION APPROACH

Proof of concept

180°C, 20 bar CO$_2$, ore conc.: 90 g/L
Size effect only?

- Proof of synergy between attrition and leaching

IV. COUPLED ATTRITION-CARBONATION APPROACH

Proof of concept

Hz1 – Al$_2$O$_3$ beads

KNS – SS beads

- **Hybrid mode**
- **Two-step mode**
- **Reference mode** (no attrition)

180°C, 20 bar CO$_2$, ore conc.: 90 g/L
Functional unit: 1 MWhe with a coal-fired power station

Main hypotheses:
- Yield of ~ 80% in 24 h at 20 bar CO₂ & 180°C
- CO₂ pipeline transport over a 300 km distance
- No recycling of process solution; no valorization of products

Impacts accounted for:
- CO₂ capture & compression
- Crushing & milling of ore from 1 cm down to 100 µm
- Mechanical energy expended for attrition
- Reactants pre-heating & cooling (after heat integration)

- Promising results regarding CO₂ avoided, without any process optimization
- Beneficiation of products & water recycling will also improve other LCA criteria (natural resource depletion +110% for case D)
Possible ways of optimization

IV. COUPLED ATTRITION-CARBONATION APPROACH

Inorganic additives

Autogenous mode

Relevant model is needed!
Geochemical modeling as a process design tool

Geochemical code: PHREEQC v.3 (Parkhurst & Appelo, 1999, 2013)

Available databases: LLNL, Thermoddem

Selection based on existing exp. data for main system components
Geochemical modeling as a process design tool

Geochemical code: PHREEQC v.3 (Parkhurst & Appelo, 1999, 2013)

Available databases: LLNL, Thermoddem

Selection based on existing exp. data for main system components

Discrepancies for talc, but no solubility data available (in similar conditions) → assessment on carbonation results

Liquid: extended Debye-Hückel activity coefficient model (low salinity)
Gas: Peng-Robinson equation of state (non-ideal behavior of CO₂ - H₂O mixture at investigated P)
Solid: description of several solid solutions (e.g. (Mg,Fe)CO₃)
Case study 1: KNS / “inert” grinding medium

“KNS” (90 g/L) described as an assemblage of MgO, SiO₂ and FeO
All minerals including Mg, Si or Fe are allowed to precipitate, except quartz

- Threshold T for quantitative carbonation at 20 bar CO₂ depends on the database!
- At T = 180°C and P CO₂ = 20 bar:
 - LLNL ➔ theoretical max carbonation yield: 25%
 - Thermoddem 2017 ➔ conditions close to the drop in carbonation yield
Case study 1: KNS / “inert” grinding medium

“KNS” (90 g/L) described as an assemblage of MgO, SiO₂ and FeO
All minerals including Mg, Si or Fe are allowed to precipitate, except quartz

Mineral speciation of KNS-H₂O-CO₂

Operating threshold temperature depends on P_{CO_2}
Case study 1: KNS / “inert” grinding medium

“KNS” (90 g/L) described as an assemblage of MgO, SiO$_2$, FeO, CaO, Al$_2$O$_3$ and MnO
All minerals including Mg, Si, Fe, Ca, Al or Mn allowed to precipitate (except quartz)

Mineral speciation of KNS-H$_2$O-CO$_2$

- The model predicts a noticeable effect of slag “impurities” (Al$_2$O$_3$ ~ 2%) due to the existence of various stable aluminosilicate phases

Thermoddem 2017
IV. COUPLED ATTRITION–CARBONATION APPROACH

Case study 2: KNS / effect of grinding medium

Experimental data

- Carbonation yield $\sim 50\%$ with sand (180°C, 20 bar, 90 g/L KNS)
- Crystallized phases = initial mineral phases (enstatite, ferrosilite, augite), quartz (sand) & mixed carbonates (dominated by MgCO$_3$ pole)
- TEM/EDX

→ Precipitation of various (amorphous) silicates

- Higher yield achieved with stainless steel beads ... but increase of Fe content in solid product &
IV. COUPLED ATTRITION–CARBONATION APPROACH

Case study 2: KNS / effect of grinding medium

Experimental data

- **Carbonation yield** ~ 50% with sand (180°C, 20 bar, 90 g/L KNS)
- **Crystallized phases** = initial mineral phases (enstatite, ferrosilite, augite), quartz (sand) & mixed carbonates (dominated by MgCO₃ pole)
- TEM/EDX

→ Precipitation of various (amorphous) silicates

- Higher yield achieved with stainless steel beads
 ... but increase of Fe content in solid product & a few discrepancies between carbonate amounts calculated from TGA and carbon content
Stainless steel beads are corroded during attrition-leaching under CO₂

IV. COUPLED ATTRITION-CARBONATION APPROACH

Case study 2: KNS / effect of grinding medium

“KNS” described as an assemblage of MgO, SiO₂, FeO, CaO, Al₂O₃ and MnO

Steel beads modeled as a (Fe₀.₈₇Cr₀.₁₃) solid solution

Mineral speciation of KNS-H₂O-CO₂

Fe extracted from beads as FeCO₃ & ferro-magnesium-aluminosilicate

Formation of solid carbon:

\[
\text{Fe (steel) + } \frac{3}{2} \text{CO}_2 (\text{aq}) = \text{FeCO}_3 (\text{ss}) + \frac{1}{2} \text{C (s)}
\]

\[P_{\text{CO}_2} = 20 \text{ bar}, T = 175°C, \text{ slag conc.} = 90 \text{ g/L}\]
“Synthetic olivine” described as an assemblage of MgO, SiO$_2$, FeO, CaO, Al$_2$O$_3$ and MnO

Initial PSD accounted for, dissolution kinetic parameters from Prigiobbe et al. (2009)

Alumina beads modeled as corundum, kinetic parameters from Palandri & Kharata (2004)

Case study 3: Batch simulation for olivine ore

Time-evolution of carbonation yield

“Inert” grinding medium

Effect of alumina grinding beads

- Very slow dissolution kinetics
 → Negligible effect on system speciation

$P_{CO_2} = 20$ bar, $T = 180^\circ C$, ore conc. = 90 g/L

- Good agreement between experimental data and modeling
- Process dynamics driven by the dissolution rate of fresh ore surface
Learnings & issues

- Proof of concept of the attrition-carbonation process with a stirred bead mill; **Synergy between attrition & carbonation**

- **Favorable LCA;** several optimization levers to improve process efficiency, cost & environmental impact

- **Grinding medium to be carefully selected (autogenous mode?)**

- **Geochemical modeling is a powerful tool** for designing the attrition-carbonation process:
 - *equilibrium calculations* → suitable operating window (to be verified experimentally) & material selection for the process equipment (grinding media)
 - *coupling of thermodynamics with chemical kinetics* → process sizing & optimization

SO WHAT'S NEXT?

- A continuous scalable demonstrator
- Beneficiation of carbonation products
Attrition reactor ~4 L operating under T (max 200°C) & P (max 30 bar)

Bench-scale pilot reactor to be built in the coming months

Continuous bench-scale process
Utilization of MC products as construction or filling materials

- Hybrid process products: agglomerates of nano-sized particles of carbonates, silica & silicates
 - Inert filler or pozzolana (mainly ultra-fine silica fraction + MgCO₃) CO₂ sequestered (& avoided)
 - Hydraulic binder (mainly Mg rich fraction + SiO₂) CO₂ avoided

Goal: valorization without solid separation & with minimum dewatering

- Virtuous CO₂ loop
- Reduction of natural resource depletion (no need for limestone)
- Reduction of heat demand (T_{calcination} ↓)
- Local production of construction materials

- Potentially highly reactive additives

Could in theory absorb Gt of CO₂ (approximately 33 billion tons of concrete produced / year)
New concept: CCUS combined with Enhanced Metal Recovery

Innovative chemistry under attrition environment

V. CONCLUSIONS: ONGOING & FUTURE WORK

Efficient CO$_2$ capture (dilute flue gases)

+ catalysis of CO$_2$ mineralization

+ potential modulation of silica precipitation

+ selective metal recovery
"Historically", CO\textsubscript{2} mineralization was compared to geological storage, in terms of storage cost and avoided CO\textsubscript{2}:

Limited development ...

Overall scheme for CO\textsubscript{2} mineralization

"Historically", CO\textsubscript{2} mineralization was compared to geological storage, in terms of storage cost and avoided CO\textsubscript{2}:

Limited development ...

In recent years, the mineralization of CO\textsubscript{2} systematically combines CO\textsubscript{2} storage and production of commercial goods, coupling environment and economy:

Booming development!

Acknowledgements

French National Research Agency,
Total Oil & Gas company,
Center for technological research on Nickel of New Caledonia,
Caledonian Energy Agency

for funding these research works

Our PhD & post-doc students: B. Bonfils, I. Benhamed, J. Diouani

Our technical staff: J.L. Labat, I. Coghe, L. Farhi, C. Rey-Rouch (LGC), A. Moreau (LCC Toulouse), C. Charvillat (CIRIMAT Toulouse) for their support on the reactor pilot and the solid analyses

Thank you for your kind attention!
The actual team

Pr. Martin Cyr

Dr. Carine Julcour

Dr. Laurent Cassayre

Dr. Solène Touzé

Pr. Julien Leclaire

France Bailly, Director

Pr. Florent Bourgeois