OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix

Boyer, Quentin and Duluard, Sandrine Nathalie and Tenailleau, Christophe and Ansart, Florence and Turq, Viviane and Bonino, Jean-Pierre Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix. (2017) Journal of Materials Science, 52 (21). 12677-12688. ISSN 0022-2461

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: https://doi.org/10.1007/s10853-017-1379-9


Among the methods to create superhydrophobic surfaces by wet chemistry, one of the strategies consists in coating the substrate with a hydrophobic polymer with specific morphology. Such elaborated surfaces are largely developed and can present complex architectures but are generally fragile. Ceramic-based coatings show better durability. In this work, a new route associating inorganic and polymeric parts is used. Surfaces with superhydrophobic properties are prepared with a mixture of zinc oxide (ZnO) particles in a hybrid organic inorganic matrix prepared via sol–gel route. ZnO particles were synthesized by the inorganic polycondensation route and exhibit an appropriate micro-/nanostructure for superhydrophobicity. Sol–gel matrix is obtained by the alkoxide route with aluminum-tri-secbutoxide (ASB) and (3-glycidoxypropyl)trimethoxysilane (GPTMS). A step of octadecylphosphonic acid (ODP) functionalization on ZnO particles and on film surfaces was employed to considerably improve hydrophobic properties. This new route enables to obtain superhydrophobic coatings that exhibitwater contact angles superior to 150°. These coatings show a homogeneous and smooth coverage on aluminum alloy substrate. Results attest the significance of the synergy for superhydrophobic coatings: a micro-/nanostructured surface and an intrinsic hydrophobic property of the material. The durability of the coatings has also been demonstrated with only a slight decrease in hydrophobicity after erosion.

Item Type:Article
HAL Id:hal-02008672
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:05 Feb 2019 17:41

Repository Staff Only: item control page