OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

A secure localization framework of RAIN RFID objects for ambient assisted living

Khalid, Ahmad. A secure localization framework of RAIN RFID objects for ambient assisted living. PhD, Réseaux, Télécommunications, Systèmes et Architecture, Institut National Polytechnique de Toulouse, 2017

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4MB

Abstract

Internet of things (IoT) is currently on our doorsteps. Numerous domains have beneted from this technology. It ranges from a simple application such as identifying an object up to handling a more complex system. The Radio Frequency IDentication (RFID) is one of the enabling technologies that drive the IoT to its position today. It is small, cheap and does not require any additional power sources. Along with its ubiquitous functionality, this technology enables the positioning of an object within a specic area. Ambient Assisted Living (AAL) is one of the many domains that benet from the IoT. It aims at assisting elderly people in their daily routines by providing new assistive services in smart homes for instance. RFIDs in a smart home come as a great help to an elderly person, for example, to nd an object that they misplaced. However, even with all its benets in simplifying our lives, it is unfortunately double-edged where the advantage that it brings to an object could in turn go against itself. Indeed to be able to help the older adults to locate an object, the system requires certain data in relation to the positioning of the object and its identication. As the passive RFID tag coverage is very small, once its presence is detected, it is dicult to hide it. The ability of this technology in localizing objects gives an opportunity to a third person to take an advantage of the system. In parallel with the persistent and constant need of privacy and secrecy by the users, the objective of this thesis consists of improving the privacy in localizing an object through a new protocol based on the latest version of the RFID second generation passive tag. The proposed protocol must be able to prevent an object from being identied and located by unauthorized parties or a malicious reader. The rst contribution of this work is the assessment of the RFID anti collision management. It is performed through the creation of an OMNET++ framework, modelled and built based on the latest RFID standard developed by GS1 and incorporated by ISO/IEC called Gen2V2 (RFID class 2 Generation 2 Version 2). It is a passive RFID tag that does not require any internal power sources to operate. It communicates using the UHF frequency. The Gen2V2 standard provides a list of cryptographical suites that can be used as a method to authenticate a tag and a reader. This new generation of tags is supported by an alliance of manufacturers called RAIN (RAdio frequency IdenticatioN) that promotes the adoption of the Gen2V2. The anti collision management overall performance is then compared with its theoretical value and four of its cryptographical suites namely PRESENT80, XOR, AES128 and cryptoGPS. Among the performances evaluated within the framework is the number of collisions and the duration required to interrogate a group of tags. Note that an addition of a localization functionality within the framework reveals that exchanged messages through wireless channel prior to the authentication can lead to a malicious localization of an object. To increase the localization privacy within AAL application, we propose therefore a second contribution which is a new localization method that is based on the current Gen2V2 standard exchanges by anonymizing the tag identity.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Peyrard, Fabrice and Conchon, Emmanuel
Statistics:download
Deposited On:02 Feb 2018 11:57

Repository Staff Only: item control page