OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Three-dimensional flow past a fixed or freely vibrating cylinder in the early turbulent regime

Gsell, Simon and Bourguet, Rémi and Braza, Marianna Three-dimensional flow past a fixed or freely vibrating cylinder in the early turbulent regime. (2018) Physical Review Fluids, 3 (1). 013902. ISSN 2470-0053

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1103/PhysRevFluids.3.013902


The three-dimensional structure of the flow downstream of a circular cylinder, either fixed or subjected to vortex-induced vibrations, is investigated by means of numerical simulation, at Reynolds number 3900, based on the cylinder diameter and current velocity. The flow exhibits pronounced fluctuations distributed along the span in all studied cases. Qualitatively, it is characterized by spanwise undulations of the shear layers separating from the body and the development of vortices elongated in the plane normal to its axis (planar vortices). A quantitative analysis of crossflow vorticity fluctuations in the spanwise direction reveals a peak of fluctuation amplitude in the near region (i.e., area of formation of the spanwise wake vortices) and opposite trends of the spanwise wavelength in the shear layer and wake regions; the wavelength tends to decrease as a function of the streamwise distance in the shear layers down to a minimum value close to 0.5 body diameters and then slowly increases further in the wake. The spanwise structure of the flow is differently altered in these two regions, once the cylinder vibrates. In the shear layer region, body motion is associated with an enhancement of planar vortex formation. The amplification of vorticity spanwise fluctuations in this region is accompanied by a reduction of the spanwise wavelength; it is found to decrease as a function of the instantaneous Reynolds number based on the instantaneous flow velocity seen by the moving body, following the global trend of the wavelength versus Reynolds number previously reported for fixed cylinders. In the wake region, the flow spanwise structure is essentially unaltered compared to the fixed body case, in spite of the major distortions of the streamwise and crossflow length scales.

Item Type:Article
Additional Information:Thanks to the American Physical Society. The definitive version is available at https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.013902
HAL Id:hal-01681823
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:11 Jan 2018 17:43

Repository Staff Only: item control page