OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Study of new exchangers for boron removal from water containing high concentration of boron

Nguyen, Thi Thu Hien. Study of new exchangers for boron removal from water containing high concentration of boron. PhD, Sciences des Agroressources, Institut National Polytechnique de Toulouse, 2017

(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Boron is an element, which is necessary as essential nutrient for living organisms, especially for plants where it is involved in cell wall composition. But boron excess can cause some problems on the development of plants (defoliation, decay and fall unripe fruits), of humans and animals such as nausea, diarrhoea, dermatitis, lethargy. Boron toxicity also changes blood composition, caused disorder in neurological, physical, intellectual development. Nowadays, due to the shortage of fresh water sources, seawater desalination has been becoming an alternative fresh water supply. However, the presence of boron in seawater is quite high (4.5 mg L–1, around 4.5 mM). Moreover, the increasing use of boron in industries and its discharge to the environment has led to the contamination of surface and ground waters. As the result, boron removal, in production of drinking water becomes very important. Therefore, the World health organization has recommended a guideline of 0.5 mg L–1 B in drinking water and a maximum limit of 0.3 mg L–1 B in fresh water used for irrigation. The objective of this thesis is to study the mechanisms of boron surface exchange on different materials versus time and at equilibrium depending on some physicochemical parameters such as pH, initial boron concentration, reaction time in order to find a new exchanger for boron removal. Boron removal was carried out by ion exchange process using 2 types of resins: Amberlite IRA 743, Diaion CRB 03 as boron selective resins with methylglucamine functions, and Ambersep 900-OH and Amberlite IRA 402 Cl as anionic exchange resins with ammonium functions. From batch studies, fast exchange between resin surface and liquid phase was observed with boron removal up to at least 96 % within 30 min for Amberlite IRA 743, Diaion CRB 03 and Ambersep 900- OH. The reaction between resin surface and boron solution reached equilibrium after 2 h for all the resins. The pseudo-second order kinetic model was used to well describe the sorption kinetic process of the resins. At equilibrium, the experimental results showed that the maximum adsorption was observed to be achieved at pH 8 for Ambersep 900- OH, pH 10 for Amberlite IRA 402 Cl and independent on pH range from 6 to 12 for the 2 boron selective resins Amberlite IRA 743 and Diaion CRB 03. At pH 8 and for boron concentrations < 20 mM, the Langmuir-type relationship was used to fit the experimental data for Amberlite IRA 743, Ambersep 900- OH and resin Diaion CRB 03. In the range of studied boron concentration, the boron sorption onto Amberlite IRA 402 Cl followed linear-type behaviour. At pH 8 and for boron concentrations < 20 mM, the sorption capacities are: 1, 0,7, 0,3 et 0,05 mmol g–1 for Diaion CRB 03, Amberlite IRA 743, Ambersep 900- OH and Amberlite IRA 402 Cl, respectively. Column experiments were performed with the anionic resin Ambersep 900-OH and the selective one Amberlite IRA 743 by studying both the influence of boron concentration and the residence time. For the selective resin, if the residence time decreases, the boron breakthrough is fast followed by a long tail. For larger residence time, local equilibrium seems to be assumed. Results are thus consistent with batch experimental data. For the anionic resin, the nonlinear behaviour is also confirmed. Moreover, column experiments showed a strong difference during desorption. To regenerate resins, acid and basic treatments are necessary for the selective resin although a basic solution is enough for the anionic resin. A more detailed study of mechanisms is in progress in order to build a exchange model for predicting boron fate. Finally, characterization of pectins was also performed. Its composition (sugar and boron content) and the viscosity of pectin solutions were quantified. Filtration experiments allowed testing the efficiency of such material to remove boron too

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Behra, Philippe and Pontalier, Pierre-Yves
Deposited On:13 Dec 2017 09:22

Repository Staff Only: item control page