Ultrasonic ice protection systems

CONTEXT & OBJECTIVES

- **Energetic challenge of icing protection system**
 - Excluding propulsion, 2nd power consumer after Environmental Conditioning System
 - Bleed air de-icing systems decreases the performance of reactors
 - Electrical de-icing systems currently in use still one of the main power consumer

- **Objectives of the study**
 - Investigate low power ice protection system based on piezoelectric technology
 - Assess potential benefit at A/C level compared to more classical electrical solutions e.g. electro-thermal

METHODOLOGY

- **Main design drivers for piezoelectric deicing systems**
 - Thickness and shape of ice
 - Form and dimensions of the substratum to protect
 - Boundary conditions
 - Stress at the interface ice/substrate leading to delamination and cracking

- **Modeling assumptions**

- **Design methodology**
 - Modal analysis with FEM simulation or analytical model:
 - to link mode type, displacements and stress
 - required displacement to delaminate
 - to compute the electromechanical coupling between the actuator and the substratum
 - required voltage and current to delaminate

THEORETICAL RESULTS

- **PZT actuators and structures can be modeled by 2 equations:**
 - Mechanical equation \(M\ddot{u} + f_u + Ku = NV - F \)
 - Electrical equation \(q = Nu + CuV \)
 - with \(N \) the electromechanical coupling

- **At resonance frequencies and for \(F = 0 \):**
 \[
 M\ddot{u} + f_u + Ku = NV - f \quad \Rightarrow \quad V = \frac{f_u}{N} = \frac{M\omega^2 u_0}{NQ_m}
 \]
 - with \(Q_m \) the mechanical quality factor of the vibrating structure
 - \(u_0 \) the required displacement for delamination

PRACTICAL RESULTS

- **Results for a 2D plane model:**
 - Extensional modes > Flexural modes
 - to get low ratio of shear stress
 - Delamination of ice without damaging the actuator

PERSPECTIVES

- Next tests on small leading edges in an icing wind tunnel
- Use of pre-stressed piezoelectric actuators to avoid damage of piezoelectric systems
- Control of the resonant piezoelectric actuators to optimize the consumption
- Assessment of the piezoelectric deicing systems at aircraft level
- Investigation of coatings for decreasing the required shear stress to delaminate and thus the required electrical power (collaboration with Carleton University)