OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cell

Straubhaar, Benjamin. Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cell. PhD, Dynamique des fluides, Institut National Polytechnique de Toulouse, 2015

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
5MB

Abstract

A Proton Exchange Membrane Fuel Cell (PEMFC) is a device converting hydrogen into electricity thanks to an electrochemical reaction called reverse electrolysis. Like every fuel cell or battery, PEMFCs are made of a series of layers. We are interested in the gas diffusion layer (GDL) on the cathode side. The GDL is made of carbon fibers treated hydrophobic. It can be seen as a thin porous medium with a mean pore size of few tens of microns. A key question in this system is the management of the water produced by the reaction. In this context, the main objective of the thesis is the development of a numerical tool aiming at simulating the liquid water formation within the GDL. A pore network approach is used. We concentrate on a scenario where liquid water forms in the GDL by condensation. Comparisons between simulations and experiments performed with a two-dimensional microfluidic device are first presented for different wettability conditions, temperature distributions and inlet relative humidity in order to validate the model. A sensitivity study is then performed to better characterize the parameters controlling the water invasion. Finally, simulations are compared with in situ experimental water distributions obtained by X-ray micro-tomography as well as with experimental distributions from the literature obtained by neutron imaging.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Prat, Marc
Statistics:download
Deposited On:01 Dec 2017 10:00

Repository Staff Only: item control page