Fraisier, Ophélie and Cabanac, Guillaume
and Pitarch, Yoann
and Besancon, Romaric and Boughanem, Mohand
Uncovering Like-minded Political Communities on Twitter.
(2017)
In: ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR 2017), 1 October 2017 - 4 October 2017 (Amsterdam, Netherlands).
|
(Document in English)
PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 145kB |
Official URL: http://doi.org/10.1145/3121050.3121091
Abstract
Stance detection systems often integrate social clues in their algorithms. While the influence of social groups on stance is known, there is no evaluation of how well state-of-the-art community detection algorithms perform in terms of detecting like-minded communities, i.e. communities that share the same stance on a given subject. We used Twitter's social interactions to compare the results of community detection algorithms on datasets on the Scottish Independence Referendum and US Midterm Elections. Our results show that algorithms relying on information diffusion perform better for this task and confirm previous observations about retweets being better vectors of stance than mentions.
Repository Staff Only: item control page