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Sediment transport and bedforms: a numerical study

of two-phase viscous shear flow

F. Charru . J. Bouteloup . T. Bonometti . L. Lacaze

Abstract After a quick overview of recent research

on sediment transport by shear flow and ripple and

dune formation, original numerical results are pre-

sented from two-phase flow modelling of the interac-

tion between a viscous flow and a bed of particles.

Good agreement is found with previous experiments

or numerical simulation, notably for the particle flux

and velocity profiles within the moving layer. Bed

instability is also found, giving rise to ripples whose

characteristics are discussed.

Keywords Sediment transport � Ripples and dunes �

Two-phase numerical simulation

1 Introduction

For more than a century, the question of sediment

transport by fluid flows, and the growth and migration

of sand ripples and dunes, have stimulated numerous

field observations, laboratory experiments, theoretical

analyses and more recently numerical simulations.

The issues concern many fields of human activity, e.g.

agriculture, waterways and maritime facilities, water

processing and effluent treatment, and industries

managing granular materials; at larger scale, the issue

is the understanding of geomorphology on Earth and

distant planets with the recent availability of satellite

observations.

In spite of the importance of the above issues, both

scientific and economic, sediment transport still

escapes from clear understanding and efficient pre-

dictive laws. The first part of the present paper offers a

quick overview of the state of the art, restricted to

viscous laminar flow (Sect. 2). The second part

provides original results from numerical simulations

of two-phase viscous shear flow. Numerical simula-

tion now appears, indeed, as a powerful and reliable

tool for the investigation of the physics of particle-

laden flows. The modelling and numerical method are

presented first (Sect. 3), and then results for particle

transport (Sect. 4) and ripple formation (Sect. 5).

These results provide new insight and help the

interpretation of viscous flow experiments, and may

be relevant in any situation where the bedload layer

lies within the viscous sublayer of turbulent boundary

layers.

2 Overview

2.1 Particle transport under uniform and steady

flow over a flat bed

Shear stress threshold for the onset of sediment

transport. Let’s consider an horizontal bed of particles
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sheared by a fluid flow, either air or water or any

liquid. Basic observation shows that for small fluid

shear stress acting on the bed, sb, the particles stay at

rest. As the shear stress is increased, some prominent

particles, more exposed to the fluid flow, are set in

motion; however, after having travelled over some

distance, they fall in small troughs of the disordered

bed, and their motion stops. For sb beyond some

threshold st, a steady particle flow rate eventually sets

in [9]. The scaling law for sb can be obtained from the

balance of the forces acting on one particle (here

assumed to be spherical or nearly spherical with

diameter d): the hydrodynamic force, of order sbd
2,

must scale with the immersed weight of the particle, of

order ðqp � qÞgd3, where g is the acceleration of

gravity and qp and q are the particle and fluid densities,

respectively. An important dimensionless number

arises, the Shields number, as the ratio of the

hydrodynamic and gravity forces:

h ¼
sb

ðqp � qÞgd
: ð1Þ

At threshold, the Shields number takes the typical

value ht � 0:1. This threshold, which can be viewed as

an effective friction coefficient, however depends on

the viscous or inertial nature of the flow at the particle

scale, i.e. on the particle Reynolds number

Rep ¼
qu�d

l
ð2Þ

where l is the viscosity and u� a characteristic fluid

velocity [32]. For viscous flow (Rep \ 5 with u� ¼ cd

and c the shear rate), ht is close to 0.12. For RepJ5, ht
first decreases down to 0.03 and then increases to the

constant value 0.05. In the latter ‘rough regime’, the

grains have size larger than the viscous layer and

emerge in the turbulent flow where velocity fluctua-

tions are of the order of the friction velocity

u� ¼ ðsb=qÞ
1=2

. The precise value of the threshold

may however be defined in several ways and depends

on the initial preparation of the bed, leading to some

scatter in the literature. Hence, the onset of particle

motion may rather correspond to a continuous transi-

tion from creeping to granular flow, as shown by [19].

Surface density and velocity of the moving particles

Beyond the threshold ht, the particle flow rate q (the

volume of particles crossing a transverse section of the

flow per unit time and flow width) increases with the

bed shear stress sb. Considerable work has been

devoted to the derivation of semi-empirical laws qðsbÞ.

The physical meaning of these laws can be understood

on considering that

q ¼
pd3

6
nUp ð3Þ

where n is the particle surface density (number of

moving particles per unit horizontal area) andUp is the

particle speed averaged over the moving particles.

Following [3], the dimensionless surface density nd2

can be shown to be proportional to h� ht. This result

follows from the idea that across the moving layer, the

shear stress sf transmitted by the fluid decreases from

sb to st at its lower boundary (on the non-moving bed),

whereas that transmitted by the grains, sp ¼ sb � sf ,

increases and follows the Coulomb friction law. The

same result can be obtained from a different argument

based on an erosion-deposition model [24]. The same

argument holds for viscous flow, where experiments

[9, 19] show that

nd2 ¼ 0:47 ðh� htÞ; ht ¼ 0:12: ð4Þ

The speed Up results from a balance between the force

exerted by the flow and the resistance of the bed, and

was shown by [4] to be proportional to u� � u�t where

u�t is some minimum particle speed at threshold.

Bagnold’s analysis was confirmed by experiments by

[16] and [24] for turbulent flow. For laminar viscous

flow, experiments showed Up ¼ 0:1cd [9], which, on

the basis of a momentum balance similar to that of [4],

can be written as

Up

VS

¼ 1:8 h; ð5Þ

where

VS ¼
ðqp � qÞgd2

18l
ð6Þ

is the Stokes settling velocity.

Particle flux Combining the above laws for the

surface density n and the particle speed Up provides

the quadratic dependence

q

VSd
¼ ahðh� htÞ; a ¼ 0:44; ht ¼ 0:12:

ð7Þ



Note that (4) and (5) were established for h\0:7

where the thickness of the moving layer remains

smaller than three particle diameters. Note also that

the different scaling with the shear stress of the particle

flow rate for turbulent and laminar flow, q / s3=2 and

q / s2, respectively, arises not from the surface

density n, which is linear for both flows, but from

the particle velocity which scale with u� ¼ ðs=qÞ1=2

for the former and u� ¼ sd=l for the latter.

Inside the moving layer Just above threshold, only a

monolayer of particles moves. However, for hJ2ht,

the thickness of the moving layer increases and the

question arises of the internal structure of the moving

layer. This question has been addressed theoretically

by [3] and [25]. According to Bagnold’s model, the

momentum transfer across the moving layer is the sum

of a fluid shear stress and a particle shear stress, each

proportional to the local shear rate and an effective

viscosity. The resulting concentration profile however

decreases slowly with height so that the particle flux

diverges logarithmically. [25] developed a viscous

resuspension theory, for particles without inertia,

based on the idea that within the moving layer, the

settling flux due to gravity is counterbalanced by a

diffusion flux proportional to the local particle

concentration gradient. This theory, which does not

account for any threshold shear stress, predicts [8]

q

VSd
¼ 7:5 h3: ð8Þ

These theories have been assessed experimentally in

viscous flow by [26], by matching the optical index of

the fluid and the particles and illuminating a few dyed

particles with a laser sheet. The velocity profiles for

both the fluid and particles appeared to be parabolic. A

model was also proposed, based on Bagnold’s ideas

with the simplification of uniform friction coefficient

tan a (where a is the friction angle), effective viscosity

leff and particle concentration /, and the neglect of

particle inertia. This model allows the measured

velocity profiles for the fluid, uf ðyÞ, and the particles,

upðyÞ, to fall on the unique curve

up

VS

¼
uf

VS

¼
9/ tan a

leff=l

yþ hb

d

� �2

ð9Þ

where y is measured from the bed surface at rest, and

tan a ¼ 0:75, leff=l ¼ 2:45 and / ¼ 0:27. The depth

hb where the velocity vanishes, and the total thickness

hb þ hm of the moving layer (see Fig. 1), increase

linearly with shear stress, as

hb

d
¼

h

/0 tan a
;

hm þ hb

d
¼

h

/ tan a
ð10Þ

where /0 ¼ 0:6 is the particle concentration in the bed
at rest. The internal structure of the moving layer has

also been investigated numerically, notably by [27],

using a two-phase flow modelling, and by [15] and

[23], see Sect. 4.

2.2 Ripples and dunes

The distinction between ripples and dunes. A major

feature of the flow over an erodible bed is that an

initially flat bed does not remain flat: small ripples

grow, with wavelength of a few centimeters. The

origin of the instability is fluid inertia, which compete

with the stabilizing effect of gravity and granular

relaxation effects for the wavelength selection, see the

review by [10]. As their amplitude grows, ripples

quickly develop a triangular shape with gentle

upstream slope and steep downstream slip face (with

slope of about 30�) where the shear stress is small.

These finite-amplitude (nonlinear) ripples propagate

with velocity

c ¼
qcrest

H
; ð11Þ

proportional to the particle flux at the crest and

inversely proportional to their height H. This impor-

tant law, which arises from mass conservation on the

slip face, implies that small ripples travel faster than

larger ones and merge with them, which induces a

coalescence process. The characteristic size of the

resulting bedforms thus increases with time (or space)

whereas their velocity slows down. The nonlinear

hb

hm

y

moving layer

x

Fig. 1 Sketch of the moving particles layer, and definition of

the thicknesses hb and hm



coarsening of the pattern eventually stops when its size

becomes comparable with an external geometrical

length, typically the flow depth for rivers [17, 28].

These bedforms, with typical wavenumber kH � 1,

are referred to as ‘dunes’. In shallow flows however

(i.e. for flow depth comparable with the ripple length,

i.e. of a few centimeters), dunes may appear as the

result of a primary longwave instability, through the

coupling with the deformable upper free surface [13]:

the growth rate of this ‘dune mode’ may indeed be

comparable to that of the ‘ripple mode’.

For unidirectional flow, the dunes remain two-

dimensional (i.e. more or less invariant in the trans-

verse direction), but three-dimensional patterns often

develop. This is notably the case for aeolian dunes

when the direction of the wind changes, or when the

dune migrates over a non-erodible ground (e.g. large

pebbles) giving rise to crescentic shapes known as

barchan dunes. Under water, dunes also exhibit a large

variety of patterns which have been reviewed by [5]

for the coastal environment and [29] for rivers. Note

that extreme events, such as storms or floods, transport

huge quantities of sediment and may completely reset

the spatial distribution of bedforms.

In conclusion, it can be said that important ques-

tions remain unclear, even for laminar flow: effective

boundary conditions for the calculation of the fluid

flow [12], particle transport close to threshold, diffu-

sive action of gravity, relaxation effects. Numerical

simulation of the two-phase flow taking place within

the bedload layer now appears as a reliable tool for the

investigation of these questions. The first step of such

simulations is to recover the robust results gained from

experiments. This is the aim of the following part of

this paper.

3 Description of the Euler–Lagrange method

The numerical strategy adopted here permits to

capture the formation of multiple ripples and dunes

without the need of describing the fields around each

grain (as done in [22]). It consists in using an Euler–

Lagrange method with which the flow is solved on an

Eulerian grid, with mesh size slightly larger than the

grain size, while individual particles are tracked in a

Lagrangian way using Discrete Element Method to

account for grain–grain interactions.

3.1 Calculation of the fluid flow

In problems dealing with bedload transport, the local

volume fraction of the granular phase / ¼ 1� e can

be large, namely of the order of the maximum random

packing inside the bed (e is the fluid-phase volume

fraction). In order to take into account the presence of

the dense granular phase in the fluid equations, one

may apply a local volume filtering to the Navier–

Stokes equations, as done by [1] in the context of

fluidized beds. The reader is also referred to [7] for a

detailed derivation of the equations. The continuity

and momentum equations then read

oe

ot
þr � ðeuÞ ¼ 0; ð12Þ

qe
ou

ot
þ uru

� �

¼ r � S� f þ qeg; ð13Þ

where e, q, u are the fluid-phase volume fraction,

density and velocity, respectively, S is the volume-

filtered stress tensor, f is the interphase exchange term

and g is the acceleration vector due to gravity.

The volume-filtered stress tensor is here modeled as

S ¼ �epIþ le�2:8 rum þ ðrumÞ
T

� �

; ð14Þ

where p and l are the fluid-phase pressure and

dynamic viscosity, respectively, and um ¼ euþ /v

is the mixture velocity which depends on the fluid- and

granular-phase velocities u and v, respectively. Fol-

lowing [27] and [11], the present choice of using um in

(14) instead of u allows the trace of S to be zero, as is

the case for the viscous stress tensor of an incom-

pressible fluid. Note here that the effective viscosity in

S strongly depends on e via the prefactor e�2:8 in order

to take into account the effect of the local grain

concentration [18]. With the present choice, the

effective viscosity is roughly increased by an order

of magnitude from regions far from the granular bed to

those inside the bed. In practice, e, f and the term /v

used in the calculation of S are computed using

Lagrangian quantities. The specific calculation of

these terms is given in Sect. 3.3.

The fluid solver used here is the JADIM code

developed at IMFT. Briefly, this code is a finite-

volume method solving the three-dimensional, time-

dependent Navier–Stokes equations (13) is solved on a

staggered grid using second-order central differences

for the spatial discretization and a third-order Runge–



Kutta/Crank–Nicolson method for the temporal dis-

cretization. The incompressibility condition is satis-

fied using a projection technique. The overall

algorithm is second-order accurate in space and time.

More details about the numerical procedure, without

grains (/ ¼ 0, e ¼ 1), can be found in [6]. Domain

decomposition and Message-Passing-Interface (MPI)

parallelization is performed to facilitate the simulation

of large number of computational cells.

3.2 Calculation of the grains motion

Thegrainsmotion is computed in aLagrangianway. For

each spherical particle of diameter d, mass mp, linear

and angular velocity up and xp, respectively, we solve

Newton’s equations for the linear and angular

momentum,

mp

dup

dt
¼ mpg þ Fc þ Fw þ Fh; ð15Þ

Ip
dxp

dt
¼ Cc þ Cw þ Ch; ð16Þ

where Ip ¼
1
10
mpd

2 I is the isotropic inertia matrix, Fc

and Fw are the inter-particle and wall-particle contact

forces, respectively, Fh is the hydrodynamic force

exerted on the particle by the surrounding fluid and Cc,

Cw and Ch are the corresponding torques. In the

present approach, the size of the particles relative to

the characteristic scales of the flow is assumed to be

small enough so the fluid can be considered uniform at

the grain scale, so that we set from now on Ch ¼ 0.

The modeling of inter-particle and wall-particle

interactions is done via a soft-sphere approach [14],

also denoted discrete element method (DEM). This

approach is based on modeling the deformation of real

particles during contact by an overlap between com-

puted non-deformable particles. The overlap is then

used to compute the normal and tangential contact

forces, using here a linear mass-spring system and a

Coulomb type threshold for the tangential component,

in order to account for solid sliding. The description

and validation of the present DEM used to compute Fc,

Fw,Cc andCw, are given in [20] and [21], respectively,

to which we refer to for more details. It is worth noting

however, that the input physical parameters for the

present soft-sphere approach are the coefficient of

normal restitution en, contact time tc and the local

friction coefficient lc which will be specified later.

Following [7], the modeling of the hydrodynamic

force Fh exerted on the particle by the surrounding

fluid reads

Fh � Vpr � Sþ Fd; ð17Þ

where Vp is the volume of the particle, S is the volume-

filtered stress tensor and Fd is the drag force. The first

term on the right-hand side of (17), referred to as the

generalized buoyancy force [1], accounts for the

volume-filtered fluid pressure gradient force and

viscous stress at the location of the particle (see

Eq. 14), while the second term includes the local drag

acting on the particle. Other hydrodynamic contribu-

tions will be ignored here, notably the viscous Basset

force and lubrication force between the particles, as

well as the inertial lift and added mass forces. While

such forces are expected to play a major role in flows

where sediment is transported as a suspension, it is

likely that their contribution is somewhat smaller or

even marginal in the case of viscous flows where the

only type of sediment transport is bedload.

The drag force Fd is computed using [30]’s

correlation derived from particle-resolved numerical

simulations of flows around arbitrary arrays of

spheres, namely

Fd ¼ 3pldeðu� upÞFðe;RemÞ; ð18Þ

where F is a drag coefficient which depends on the

fluid volume fraction e and a local particle Reynolds

number Rem defined as Rem ¼ qeju� upjd=l. Note

that Rep defined in (1) and Rem are equivalent if one

takes u� ¼ eju� upj. The drag coefficient F can be

written as F ¼ F 0 þ F 1 þ F 2 where [30]

F 0ðe;RemÞ ¼
1þ 0:15Re0:687m

e2
;

F 1ðeÞ ¼
5:81ð1� eÞ

e2
þ
0:48ð1� eÞ1=3

e3
;

F 2ðe;RemÞ ¼ eð1� eÞ3 0:95þ
0:61ð1� eÞ3

e2

 !

Rem:

ð19Þ

3.3 Interphase coupling

The influence of the fluid phase on the granular phase

in (15) comes from the term Fh while that of the

granular phase on the fluid phase in (13) appears via



e ¼ 1� /, f and/v used in the calculation of S. These

latter terms are first computed at the location of each

particle, and are then transferred to the Eulerian grid.

The interpolation of the fluid variables to the particle

location are done using a second order interpolation

scheme, while the extrapolation of the particle data to

the Eulerian grid is done using a volume filtering

operation. More precisely, / is computed as

/ ¼
1

Vc

X

~Np

p¼1

apVp; ð20Þ

where ~Np is the number of particles located in a limited

region surrounding the Eulerian grid cell, Vc and Vp

are the volume of the computational cell and that of the

pth-particle, respectively. f and /v are computed in a

similar manner by replacing Vp in (20) byFh and Vpup,

respectively. The coefficient ap is a weighting factor

using a kernel function K which monotonically

decreases with distance from the particle, namely [31]

ap ¼
Kðjxp � xcjÞ

PNc

l¼1 Kðjxp � xljÞ
; ð21Þ

KðfÞ ¼
½1� ðf=rÞ2�4; sijf=rj\1

0; sijf=rj � 1

�

ð22Þ

In (21)–(22), xc is the location of the grid cell center,

xp is the particle location, Nc is the number of Eulerian

grid cells located in a limited region surrounding the

particle and r is the bandwidth of the kernel function

typically taken as r ¼ 2V1=3
c . With the present choice,

the effect of the particle is typically spread out over

one or two neighboring cells in all directions.

4 Particle motion under a steady flow

4.1 Physical and numerical setup

We now turn to the specific case of the shearing of a

bed of particles by Couette flow. As mentioned earlier,

the bedload transport can be characterized by three

dimensionless parameters, namely the Shields num-

ber, the particle Reynolds number and the density

ratio. Taking as characteristic fluid shear stress and

velocity sb ¼ lc and u� ¼ cd, respectively, c being the

mean fluid shear rate, the dimensionless parameters

defined in (1) and (2) can be rewritten as

h ¼
lc

ðqp � qÞgd
; Rep ¼

qcd2

l
: ð23Þ

The numerical results will be compared with recent

experiments [2, 9, 26], numerical simulations [15, 23]

and theoretical analyses [8, 27], which provide

detailed descriptions of the fluid and granular flow

inside the bed. In particular, the above numerical

simulations were done using an immersed-boundary-

method which solves the flow around each particle,

and hence can be considered as a reference relative to

the present approach where the flow is solved at a scale

larger than the grain diameter. It is also worth noting

that bedload transport is driven by a laminar Couette

flow in [8, 9, 15, 26] while it is driven by an imposed

pressure gradient (Poiseuille) flow in [2, 23, 27].

In the present section, we set Rep ¼ 0:5 and

qp=q ¼ 4, as [15] in their numerical simulations, and

vary h in the range 0	 h	 0:7. The physical input

parameters for the DEM, namely the collision time,

the coefficient of normal restitution, and the friction

coefficient, are set to ctc ¼ 2
 10�4, en ¼ 0:8 and

lc ¼ 0:4, respectively. Actually, [15] and [23] have

shown that varying en and lc does not change the

results significantly.

A sketch of the flow is depicted in Fig. 2, showing

the bed of particles (randomly placed at the initial

time), and the pure fluid sheared by the upper wall with

velocity U0 in the x-direction. The particles in contact

with the lower wall are fixed. A Cartesian domain of

size Lx ¼ 20d, Ly ¼ 20d and Lz ¼ 10d along the

streamwise, vertical and spanwise directions, respec-

tively, is used. The spatial resolution is uniform, with

Dx ¼ Dy ¼ Dz ¼ 2d, corresponding to a number of

cells Nx ¼ 10, Ny ¼ 10 and Nz ¼ 5. No-slip boundary

conditions are imposed along the bottom and top

walls, while periodic boundary conditions are used in

the x- and z-directions. Gravity is oriented towards the

negative y-direction. The initial height of the bed is

10d. At initial time, a linear velocity profile with shear

rate c is imposed in the liquid with zero velocity just

above the granular bed, and the particles are at rest.

Note that the size of the computational domain is

relatively small, in particular in the streamwise

direction. This was done in order to prevent any bed

instability (such as ripples or dunes) and keep the bed

flat. An example of ripple formation in a larger domain

is presented in Sect. 5.



4.2 Particle flow rate and height of the granular

bed

A sample of the time evolution of the particle flow rate

q(t) and the mean height of the granular bed h(t) are

presented in Fig. 3 for h ¼ 0:35. The mean particle

flow rate, that is the volumetric flow rate per unit width

(in m2=s), is computed as

qðtÞ ¼
1

LxLz

X

Np

p¼1

VpupðtÞ ð24Þ

with Vp the volume of the p-th particle and Np the total

number of particles (excluding those which are fixed at

the bottom wall).

The bed height is computed as the horizontal average

of the vertical position of the topmost particles in each

cell:

hðtÞ ¼
1

NxNz

X

NxNz

i¼1

max
p2i

ðypðtÞÞ

 !

þ 0:5d ð25Þ

with yp the vertical location of the p-th particle’s

center.

As shown in Fig. 3, the particle flow rate increases

during a transient time of about ct � 200, and then

saturates to a constant value, with fluctuations of about

20 % (which would be smaller if averaged over a

larger domain). The bed height h(t), initially of 9.5d,

increases similarly of about 0.2d, on the same time

scale, corresponding to the decompaction of the

moving layer. Note that the transient time 200=c

corresponds to ð200=18hÞd=VS � 32 d=VS where

d=VS is a characteristic settling time.

4.3 Fluid and particle velocity profiles

We now turn to the streamwise velocity profiles along

the wall-normal direction. For the granular velocity

profile, the y-direction is decomposed in horizontal

layers of thicknessDh ¼ d=4 where space-averaging is

performed [23]. Introducing an indicator function of

the j-th layer

d jðyÞ ¼
1 if ðj� 1ÞDh 	 y\ jDh;
0 otherwise;

�

ð26Þ

the instantaneous number of particles in the j-th layer

at time tm is computed as

Fig. 2 (Color online) (a)

Flow geometry, coordinate

system, and instantaneous

streamwise particle velocity

for qp=q ¼ 4, Rep ¼ 0:5,

h ¼ 0:35: blue, up ¼ 0; red,

up � 0:5cd). (b) vertical
profile of the solid volume

fraction /, horizontally

averaged, when the steady-

state is reached

Fig. 3 Sample of the time

evolution of the particle flow

rate



hnpi
j
xzðtmÞ ¼

X

Np

p¼1

d jðypðtmÞÞ ð27Þ

where yp is the vertical location of the p-th particle’s

center and Np is the total number of particles.

Integration over time then reads

hnpi
j
xzt ¼

X

Nt

m¼1

hnpi
j
xzðtmÞ; ð28Þ

with Nt being the number of time samples used in the

averaging process. the granular velocity profile is

computed in a similar manner as

hupi
j
xzt ¼

1

hnpi
j
xzt

X

Nt

m¼1

X

Np

p¼1

d jðypðtmÞÞupðtmÞ: ð29Þ

All quantities were time-averaged using at least Nt ¼

100 time samples and a time duration of ct ¼ 200.

Figure 4a displays particle and fluid velocity pro-

files for h ¼ 0:35. The slip velocity between the fluid

and the particles clearly appears, with magnitude of

about 0:2 up (note that the spatial resolution in the

fluid, Dy ¼ 2d, is much coarser than that for the

particles, which is d / 4).

Figure 4b displays particle velocity profiles for six

Shields numbers in the range 0:2	 h	 0:5. In order to

assess the present calculations with the measurements

of [26] and equation (9), the velocity profiles are

shifted vertically by hb=d (see Fig. 1) according to

(10), with the same values for the solid volume

fraction /0 ¼ 0:6 and the effective friction coefficient

tan a ¼ 0:75. The agreement appears remarkable. In

this Figure, the numerical results of [15] are also

plotted, showing again excellent agreement.

4.4 Particle flux

We now consider the particle flow rate and its

variation with the Shields number. As mentioned

earlier, [9] observed that close to the threshold Shields

number, where only the uppermost grains move, the

particle flow rate increases quadratically with h,

according to Eq. (7). For higher Shields numbers,

hJ2ht where the thickness of the mobile layer is

larger than one diameter, the particle flow rate rather

increases as h3, see (8) and [23, 27].

Results from the present Couette flow simulations

are displayed in Fig. 5 for h\0:7, together with

experimental data by [9] and numerical points by [15].

It appears that all data points fall close to the cubic law

(8), provided that a threshold ht ¼ 0:14 is introduced

in this law, as done by [8]. However, close to threshold

(see the close-up view in the inset), the parabolic law

(7) fits the data much better, as expected since there the

thickness of the moving layer is small, of the order of

one single particle diameter. Recall that, unlike [15]

whose method involves the full description of the flow

around each particle, our numerical model does not

solve the flow at the particle scale. Thus, it is a priori

Fig. 4 (a) Vertical profile of the streamwise fluid velocity

uf =VS (open square) and the particle velocity up=VS (filled

circle) for h ¼ 0:35, in the vicinity of the mobile layer. Inset

larger view over the whole computational domain. (b) Particle

velocity scaled according to (9), for Shields numbers h ¼ 0:20

(filled circle), h ¼ 0:25 (filled square), h ¼ 0:30 (filled dai-

mond), h ¼ 0:35 (filled triangle), h ¼ 0:40 (filled left triangle)

and h ¼ 0:50 (filled right triangle). Solid line Eq. (9) from [26].

Open symbols: [15] for h ¼ 0:20 (open daimond), h ¼ 0:42
(open triangle)



not well suited to capture the subtle physical processes

at work near incipient motion. With this in mind, the

observed agreement is in fact remarkable.

5 Ripple formation

We now assess the ability of the numerical code to

reproduce the instability of the flat bed and the growth

of ripples. The main difference with the simulations of

the previous section lies in the much larger size of the

numerical domain along the streamwise direction,

which is now Lx ¼ 1000 d instead of 20 d. The other

(minor) difference is that the flow is initially at rest

instead of being defined by a linear velocity profile.

The dimensionless numbers are set to Rep ¼ 7:5,

qp=q ¼ 2:5 and h ¼ 0:4, while the physical input

parameters for the DEM remain unchanged.

Figure 6 displays the bed position (computed from

the vertical position of the uppermost particles), at

initial time and ct ¼ 6000. It appears that the bed does

not remain flat, and that triangular ripples appear. The

largest ripples have wavelength of about 200 d but

smaller ones can be seen too, together with small

ripples on the upstream face of larger ones.

The coarsening process arises from the fact that, as

discussed in the Introduction Section, the velocity c of

finite-amplitude ripples is inversely proportional to

their height, c ¼ qcrest=H (11), where qcrest is the

particle flux at the crest. Let us discuss this relation.

The particle flux along the bed is shown in Fig. 7: this

flux experiences large variations, being nearly zero at

the dune foot and increasing strongly towards the

crests. The mean value is about 0:5VSd, much larger

than that on flat bed (about 0:2VSd for the same

Shields number, see Fig. 5). Thus, a rippled bed

transports many more particles than a flat one, with

flux at the crest being larger by one order of

magnitude. From spatio-temporal diagrams (not

shown), the velocity of large ripples can be estimated

as c � 0:4 cd for h ¼ 0:4; this velocity is smaller than

the velocity of the fastest particles on the flat bed (of

about 0:6 cd from Fig. 4) but larger than the mean

velocity. The ripple height H may then be calculated

from (11), giving, for the highest ripple,

H � 2:5VSd=0:4cd � ð0:35=hÞd � 0:9 d. This value

is close, although smaller, to that shown in Fig. 6.

6 Conclusion

From the above review and numerical study, it appears

that numerical simulations of particle transport by

two-phase viscous shear flows are now able to

reproduce robust features of sediment transport and

ripple and dune formation. Results quantitatively

agree with those of previous experiments or numerical

simulations. In addition, numerical simulations pro-

vide measurements which are very difficult to gain

from experiments, such as the internal structure of the

Fig. 5 Dimensionless flow rate q=VSd versus Shields number h

for Couette flow: present simulations (filled circle), [15] (open

daimond), [9] (square). Solid line parabolic law (7); dashed line

cubic law (8) with ht ¼ 0:14. Inset close-up view near threshold

Fig. 6 Bed profile at the

initial time ct ¼ 0 and ct ¼
6000 (with the mean bed

position substracted)



bedload layer or the variation of the particle flux along

a rippled bed.

Some unanswered questions might therefore

receive reliable answers in the near future, and allow

for better physical understanding and improvements of

the modelling for practical purposes. Among these

questions are the fluid stresses on a wavy bed, in either

laminar or turbulent flow, and the non-equilibrium

response of the particle flux to temporal or spatial

variations of the fluid flow. More difficult questions

might then be tackled, such as polydisperse or

cohesive media, transition from bedload to suspen-

sion, or long-term dynamics of granular beds.
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