Valenza, Gaetano and Wendt, Herwig and Kiyono, Ken and Hayano, Junichiro and Watanabe, Eiichi and Yamamoto, Yoshiharu and Abry, Patrice and Barbieri, Riccardo Point-Process High-Resolution Representations of Heartbeat Dynamics for Multiscale Analysis: a CHF Survivor Prediction Study. (2015) In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015), 25 August 2015 - 29 August 2015 (Milano, Italy).
|
(Document in English)
PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 152kB |
Official URL: http://dx.doi.org/10.1109/EMBC.2015.7318766
Abstract
Multiscale analysis of human heartbeat dynamics has been proved effective in characterizeing cardiovascular control physiology in health and disease. However, estimation of multiscale properties can be affected by the interpolation procedure used to preprocess the unevenly sampled R-R intervals derived from the ECG. To this extent, in this study we propose the estimation of wavelet coefficients and wavelet leaders on the output of inhomogeneous point process models of heartbeat dynamics. The RR interval series is modeled using probability density functions (pdfs) characterizing and predicting the time until the next heartbeat event occurs, as a linear function of the past history. Multiscale analysis is then applied to the pdfs' instantaneous first order moment. The proposed approach is tested on experimental data gathered from 57 congestive heart failure (CHF) patients by evaluating the recognition accuracy in predicting survivor and non-survivor patients, and by comparing performances from the informative point-process based interpolation and non-informative spline-based interpolation. Results demonstrate that multiscale analysis of point-process high-resolution representations achieves the highest prediction accuracy of 65.45%, proving our method as a promising tool to assess risk prediction in CHF patients.
Repository Staff Only: item control page