Salanne, Mathieu and Rotenberg, Benjamin and Naoi, Katsuhiko and Kaneko, Katsumi and Taberna, Pierre-Louis and Grey, Clare P. and Dunn, Bruce and Simon, Patrice Efficient storage mechanisms for building better supercapacitors. (2016) Nature Energy, 1. 1-10. ISSN 2058-7546
|
(Document in English)
PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 4MB |
Official URL: http://dx.doi.org/10.1038/NENERGY.2016.70
Abstract
Supercapacitors are electrochemical energy storage devices that operate on the simple mechanism of adsorption of ions from an electrolyte on a high-surface-area electrode. Over the past decade, the performance of supercapacitors has greatly improved, as electrode materials have been tuned at the nanoscale and electrolytes have gained an active role, enabling more efficient storage mechanisms. In porous carbon materials with subnanometre pores, the desolvation of the ions leads to surprisingly high capacitances. Oxide materials store charge by surface redox reactions, leading to the pseudocapacitive effect. Understanding the physical mechanisms underlying charge storage in these materials is important for further development of supercapacitors. Here we review recent progress, from both in situ experiments and advanced simulation techniques, in understanding the charge storage mechanism in carbon- and oxide-based supercapacitors. We also discuss the challenges that still need to be addressed for building better supercapacitors.
Repository Staff Only: item control page