Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16354

To cite this version : Calatayud, François and Ladet, Sylvie and Balent, Gérard and Fahrig, Lenore Adaptation of a crop composition and configuration analysis method to European agricultural landscapes. (2012) In: The 15th AGILE International Conference on Geographic Information Science ; AGILE’2012, 24 April 2012 - 27 April 2012 (Avignon, France). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Adaptation of a crop composition and configuration analysis method to european agricultural landscapes
François Calatayud¹, Sylvie Ladet¹, Gérard Balent¹ and Lenore Fahrig²

1 INRA UMR 1201 DYNAFOR, F-31320 Castanet-Tolosan, France
2 GLEL Department of Biology Carlton University 1125 Colonel By Drive Ottawa, Canada K1S 5B6

Introduction

Agricultural landscapes approximately occupy a large part of available land surface and as such constitute a keystone in biodiversity conservation programs. In return, biodiversity contributes to production through ecosystem services as pollination or pest control. However, recent studies also suggested that new policies and modifications in agricultural practices in order to promote biodiversity must be accepted by the different actors of the rural space and incorporated in existing practices. In this perspective, deciphering the role of agricultural landscape heterogeneity in maintaining biodiversity may be a promising research direction. The FARMLAND project precisely aims at going on to answer to this question combining tools from geomatics, remote sensing and geostatistics associated to ecological research on biodiversity. Based on spatial indexes from landscape metrics, this work proposes a mapping method for sampling quadrats and constituting an experiment design in order to dissociate the influence of composition (the number and probability of occurrence of the different cover types) and configuration landscape heterogeneity (the spatial display of cover types) on biodiversity. After the sampling of quadrats in each of the 7 European sites, multi-base biodiversity records and ecosystem services identification will be undertaken.

We present here the different steps (1 to 7) of the adaptation of the initial methodology from a previous study (Pasher et al., 2011) to the French site “Vallées et Coteaux de Gascogne” that constituted a test zone for the other European sites.

Context

The present work ascribes to the Farmland project (BiodivERsA 2011-66) that aims at studying the relationships between agricultural landscape heterogeneity and biodiversity among seven study sites located in four different European countries.

EXPERIMENTAL DESIGN

1) Land use identification
2) Determination of landscape metrics through mobile windows
3) Masking of non-farming areas
4) Crossing metrics and determination of sampling areas range
5) Cartography of sampling areas
6) Limiting autocorrelation. Minimum distance between the center of 2 quadrats: 1.5km
7) Result: Sampling of 48 quadrats (1km²) corresponding to 4 combinations of composition and configuration heterogeneity modules in landscapes accounting for 80 to 90% of farming surface.

Discussion

While landscape history and structure is radically different in the principals and the present study, the process line has been adapted with success. The main innovations consists in taking into account, most of land size and land cover classes to represent agricultural landscape complexity and masking urban agglomerations and small villages. Indeed, the classification process can easily confound hays and pastures with grass around habitations. The use of a buffer zone that takes into account the size of the agglomeration greatly improves the process line and prevented errors in the final sampling step (i.e. a quadrat in a urban agglomeration).

Though the original procedure has been adapted entirely to our site, the whole project will require the coordination of the different laboratories involved in the project in order to fit with the peculiarity of each study site. The kick-off meeting of the project that will take place in spring 2012 will be the opportunity of such a focus.