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Our present work focuses on the coupling between thermal diffusion and convection in order to
improve the thermal gravitational separation of mixture components. The separation phenomenon
was studied in a porous medium contained in vertical columns. We performed analytical and
numerical simulations to corroborate the experimental measurements of the thermal diffusion coef-
ficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the
international space station. Our approach corroborates the existing data published in the literature.
The authors show that it is possible to quantify and to optimize the species separation for ternary
mixtures. The authors checked, for ternary mixtures, the validity of the “forgotten effect hypothesis”
established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical
resolution methods were used in order to describe the separation in terms of Lewis numbers, the
separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is
based on the parallel flow approximation. In order to validate this model, a numerical simulation was
performed using the finite element method. From our new approach to vertical separation columns,
new relations for mass fraction gradients and the optimal Rayleigh number for each component of the
ternary mixture were obtained.

I. INTRODUCTION

In the natural world, most materials are found in the form
of mixtures of several components and, in most cases, one of
the components has particular importance for industry. It is
therefore necessary to be able to extract it from the mixture.
Thermal gravitational separation is mainly used to separate
elements with high added value. Research on the transport
properties in multicomponent mixtures is also of great interest
to the scientific community (Legros et al.;1 Vafai;2 Nield and
Bejan;3 Baytas and Pop4), because such mixtures are involved
in many natural and industrial processes. The case of binary
mixtures has been widely studied, see for instance the work
of Karimi-Fard et al.5 and Charrier-Mojtabi et al.6 There
are several experimental techniques and numerical prediction
models that allow the diffusion, thermal diffusion, and Soret
coefficients in binary mixtures to be determined accurately,
according to Blanco et al.7 Gebhardt et al.8,9 measured the
diffusion, thermal diffusion, and Soret coefficients for binary
and ternary mixtures. Three different optical techniques
were employed, such as optical beam deflection, optical
digital interferometry, and thermal diffusion forced Rayleigh
scattering. Three-dimensional numerical modeling of Soret-
driven convection in a cubic cell filled with a binary mixture
of water (90%) and isopropanol (10%) was performed by
Shevtsova et al.10 Alonso et al.11 presented results for direct
numerical simulations of convection in binary fluids. During
the last ten years, many works have been devoted to improving
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the experimental device in order to increase separation. Platten
et al.12 used a tilted cavity heated from the top. Elhajjar
et al.13 studied the unicellular flow appearing at the onset of
convection in a binary fluid saturating a horizontal porous
cavity heated from below.

Transport properties play an important role in many
natural and technological processes and for the fundamental
understanding of the behavior of liquids. Nowadays, the focus
is on ternary mixtures because it is necessary to analyze
and understand them before moving on to multicomponent
mixtures. The present work extends the previous studies to
ternary mixtures, focusing on the separation of components in
a porous enclosure by means of Soret-driven convection.
Even today, the Soret effect, a cross effect between
temperature and concentration gradients, is poorly understood
in multicomponent mixtures. The mass diffusion flux, Jd

i , can
be induced by both a temperature and a mass fraction gradient.
Considering the linear laws of irreversible thermodynamics,
the mass flux equations for the components 1 and 2 in a
ternary mixture may be written as

Jd
1 = −ρD11∇Cd

1 − ρD12∇Cd
2 − ρD′T ,1∇Td, (1a)

Jd
2 = −ρD22∇Cd

2 − ρD21∇Cd
1 − ρD′T ,2∇Td, (1b)

where D11, D12, D21, and D22 are the molecular diffusion
coefficients, D′T ,1 and D′T ,2 are the thermal diffusion
coefficients, Cd

1 and Cd
2 are the mass fraction, and Td is

the dimensional temperature. The third mass diffusion flux,
Jd

3 , is defined from the condition that the fluxes of all the
components must sum to zero.
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In the present work, we extend the previous studies
to ternary mixtures focusing on the species separation in a
porous cell filled with a ternary mixture. The analytical model
presented for the unicellular flow is based on the parallel flow
approximation. The separation is expressed in terms of the
thermal Rayleigh number (Ra), the Lewis number (Le), the
separation ratio (ψ), the cross-diffusion coefficients (Cr), and
the aspect ratio of the enclosure (A). The separation can be
optimized in terms of the temperature difference or the cell
thickness.

In this work, the results obtained and conclusions drawn
are shown in order to serve as a reference for future
techniques and measurements, as well as for the setting up and
development of new prediction models based on molecular
dynamics or on non-equilibrium thermodynamics.

II. MATHEMATICAL FORMULATION

In this part of the study, we consider a rectangular cavity
with an aspect ratio A = H/e, where H represents the height
of the cavity and e its thickness. It is assumed that the
whole convective phenomenon is perfectly two-dimensional
in the (x, y) plane (x according to the cell thickness and
y to the height). The cavity is filled with a vertical
layer of a porous medium, saturated by a ternary mixture,
n-dodecane/isobutylbenzene/tetralin (nC12-IBB-THN). The
Soret effect and cross-diffusion are taken into account. The
cavity is placed between four impermeable walls. The vertical
walls are maintained at uniform temperatures, while the
horizontal walls are thermally isolated. All the walls are
considered to be stiff and the porous layer is taken to be
homogeneous and isotropic. It is assumed that Darcy’s law
is valid and that the Oberbeck-Boussinesq approximation is
applicable. The thermophysical properties of the fluid are
considered constant except the density in the buoyancy term
which varies linearly with the local temperature and mass
fractions,

ρ = ρ0 *
,
1 − βT(Td − T0) −

2
k=1

βCk
(Cd

k − C0k)+
-
, (2)

where βT and βCk
are the thermal and the mass fraction

expansion coefficient for each component, respectively. T0
and C0k are, respectively, the reference temperature and the
initial or reference mass fraction of each component.

The convective flow and the heat and mass transfer are
governed by the resulting dimensionless equations,

∇ · V = 0, (3a)

V = −∇P + Ra *
,
T +

2
k=1

ψkCk
+
-

ey, (3b)

∂T
∂t
+ V · ∇T = ∇2T, (3c)

ε
∂Ck

∂t
+ (V · ∇)Ck =

1
Lek

*...
,

∇2Ck − ∇2T +
2

k=1
j,k

Crk j∇2Cj

+///
-

.

(3d)

The reference scales are e for the geometric parameter,
(ρcp)∗e2/λ for the time, where λ is the thermal conductivity
of the saturated porous medium plus the liquid inside the
pores, and (ρcp)∗ is the heat capacity of the saturated porous
medium; it is described as (ρcp)∗ = ε∗(ρcp) f + (1 − ε∗)(ρcp)s,
where (ρcp)s represents the heat capacity of the porous
material, (ρcp) f the mixture heat capacity, and ε∗ the
cell porosity. Furthermore, e(ρcp) f /λ is the reference
scale for the velocity, K(ρcp) f /(λµ) for the pressure, and
T = (Td − T0)/∆T for the temperature, where ∆T = T1 − T0
with T1 , T0, and Ck = (Cd

k
− C0k)/∆Ck for the mass fraction

where ∆Ck = −∆T D′Tk/Dkk where DTk and Dkk are the
thermal diffusion coefficient and the mass diffusion coefficient,
respectively, for each component. D′Tk = F(Ck)DTk, when
F(Ck) is a function verifying F(Ck = 0) = 0 and F(Ck

= 1) = 0 (Costesèque et al.14). Most authors have employed
F(Ck) = Ck (1 − Ck) but Larre et al.15 or Ghorayeb and
Firoozabadi16 used other phenomenological forms. A small
variation of Ck is assumed and F(Ck) is approximated by
F(C0k), where C0k is the initial mass fraction corresponding
to each component. The problem under consideration
now depends on dimensionless parameters such as the
thermal Rayleigh number (Ra = K Hg βT∆T/(να), where
α = λ/(ρcp) f is the equivalent thermal diffusivity), the sepa-
ration ratio (ψk = −(βCk

/βT)(DTk/Dkk)F(C0k)), the Lewis
number (Lek = α/Dkk), the cross-diffusion numbers (Crk j
= (Dk j/Dkk)(∆Cj/∆Ck); Larre17), the normalized porosity
(ε = ((ρcp) f /�ρcp

�∗)ε∗), and the aspect ratio (A = H/e).
Through the dimensionless formulation, the porosity

occurs explicitly only in (3d). However, it acts across the
filtration velocity vector (V), the mass diffusion coefficients
(D), and the thermal diffusion coefficients (DT). Indeed, the
filtration velocity represents the mean fluid velocity taken
over an Elementary Representative Volume (ERV). This value
is defined by the product of the medium porosity and the
interstitial velocity vector (V = ε Vf). In addition, tortuosity
(τ) affects the coefficients characterizing any transport
phenomena and it can be realistically defined (Costesèque
et al.18), for molecular diffusion phenomena by τ2 = D f /D
(Fick Diffusion) or τ2

T = DT f /DT (thermal diffusion), where
D f and DT f represent, respectively, the mass diffusion and
the thermal diffusion of the mixture.

The dimensionless boundary conditions of the problem
are

V · n = 0, ∀M(x, y) ∈ ∂Ω, (4a)
Jk · n = 0, ∀M(x, y) ∈ ∂Ω ∀k = 1,2, (4b)

T(0, y) = 1 T(1, y) = 0, (4c)
∂T
∂ y |x, y=0

= 0
∂T
∂ y |x, y=A

= 0, (4d)

with Jk = ∇Ck − ξk ∇T; for ξk = (1 − Crk j)/(1 − Crk j Cr jk).
∂Ω characterizes the enclosure borders.

III. ANALYTICAL SOLUTION

A. Parallel flow

For the analytical solution, component 1 is the n-dodecane
(nC12) and component 2 is the tetralin (THN). The study takes



place far enough from the horizontal walls, so the parallel
flow hypothesis (PFH) is verified and side effects do not have
to be considered. The analytical study is made in the steady
state. The basic flow is given by

V = v(x) ey, (5a)

T(x) = a x + b ∀a , 0, (5b)
Ck(x, y) = mk y + fk(x) ∀k = 1,2. (5c)

mk is a constant that expresses the vertical gradient of the mass
fraction of species k between the two horizontal extremities
of the cell. The PFH approximation is not valid close to the
horizontal walls. For the absence of boundary conditions to
be justified, each component in the cavity is assumed to be
conserved and the mass flow rate through a horizontal cross
section is equal to zero, 1

0

 A

0
Ck(x, y) dy dx = 0, ∀k = 1,2, (6a)

 1

0
v(x) dx = 0. (6b)

The horizontal boundary conditions of the convective
movement for x = 0,1 are, by continuity

dv
dx
= Ra

d
dx

(T + ψ1 C1 + ψ2 C2). (7)

Using the basic unicellular flow (5) and Eqs. (3), an equation
system for v(x), T(x), and fk(x) is found, as

d2T
dx2 = 0, (8a)

d2v

dx2 − η v(x) = 0, (8b)

d2Ck

dx2 = γk v(x) ∀k = 1,2, (8c)

for

η = Ra
2

k=1

ψk γk, (9a)

γk =
Lek mk − Le j m j Crk j

1 − Crk j Cr jk
. (9b)

Using the boundary conditions (4), (6), and (7), the system of
equations, which is dependent on the velocity, the temperature,
and the mass fractions is solved. The temperature evolution is
of the form

T(x) = 1 − x. (10)

The solutions are given by the following expressions according
to the sign of η.

• If η > 0, then η = ω2,

v(x) = σ


1 − ch(ω)
sh(ω) ch(ω x) + sh(ω x)


, (11a)

fk(x) = γk σ

ω2


1 − ch(ω)

sh(ω) ch(ωx) + sh(ωx)


+
γk σ

ω

(
1
2
− x

)
− ξk x +

ξk − mk A
2

. (11b)

• If η < 0, then η = (iω)2,

v(x) = σ


cos(ω) − 1
sin(ω) cos(ωx) + sin(ωx)


, (12a)

fk(x) = −γk σ
ω2


cos(ω) − 1

sin(ω) cos(ωx) + sin(ωx)


− γk σ
ω

(
1
2
− x

)
− ξk x +

ξk − mk A
2

, (12b)

where σ = − Ra
ω

*
,
1 +

2
k=1

ψk ξk+
-
.

Figure 1 shows the graphs plotting the evolution of the
vertical velocity through the thickness of the cavity in the two
cases presented (Figures 1(a) and 1(b)).

The values of physical quantities defining the ternary
mixture of n-dodecane/isobutylbenzene/tetralin at equal mass
fraction proportions, such as the thermal expansion coefficient,
the solutal expansion coefficient of nC12 and THN species,
and the density and dynamic viscosity of the mixture were
determined as in the publication of Leahy-Dios et al.19 The
value of the thermal diffusivity of the mixture in the porous
medium was calculated from the thermal conductivity of the
porous medium and the mixture heat capacity values (Jaber20).

The values of the thermal diffusion coefficient and
the Soret coefficient of each component of the ternary
mixture nC12-THN-IBB (0.33-0.33-0.33) were defined as
described by Gebhardt and Köhler.9 The values of nC12
and THN mass diffusion coefficients were measured by
Larrañaga et al.21 All these values of the physical parameters
characterizing the ternary mixture saturating the porous
medium under consideration were used to numerically

FIG. 1. Vertical velocity evolution according to the cell thickness in both
cases (a) η > 0 and (b) η < 0 for ψ1= 0.256, ψ2= 0.144, Le1= 516.9,
Le2= 304.2, Cr12=−0.013, and Cr21=−0.704.



define the dimensionless numbers employed in the analytical
solution: the Rayleigh number, the separation ratio, the Lewis
number, and the cross-diffusion coefficients.

In order to determine the mass fraction gradient of the two
components m1 and m2, it is assumed that the mass fraction
flow rate of the components through a horizontal cross-section
is equal to zero. This adds two new conditions 1

0
(VC1 + J1) · eydx = 0, (13a)

 1

0
(VC2 + J2) · eydx = 0, (13b)

that give the two following coupled equations:

m1 =

 1

0
v(x) f1(x) Le1 dx − Cr12 m2, (14a)

m2 =

 1

0
v(x) f2(x) Le2 dx − Cr21 m1. (14b)

These Eqs. (14) are solved according to the temperature
difference ∆T between the two vertical walls for the case of
a ternary mixture whose cross-diagonal elements of the mass
diffusion matrix are considered void (Cr12 = Cr21 = 0), and in
the case of the real mixture by taking the cross-diffusion effect
into account. Note that a mass fraction gradient dimensional
shape can be given as follows:

md
k = −

DTk

Dkk

∆T
e

mk . (15)

Table I shows the digital values of the mass fraction gradients
(md

k
) of nC12 and THN according to the temperature difference.

We see that when ∆T is higher than 15 ◦C, the mass fraction
gradient values of each component are very close in both
studies (cross-diffusion omitted and kept).

Furthermore, mass fraction gradients of the components
1 and 2 are drawn according to the temperature difference
∆T for the two study cases in Figure 2. The mass fraction
gradients m1 and m2 are directly related to the separation of the
two components nC12 and THN, respectively, by S1 = m1 × A
and S2 = m2 × A.

In order to increase the separation level of the mixture, we
assess the mass fraction vertical gradient according to a control

TABLE I. Comparison of mk values between the different mixture cases,
Crk j = 0 and Crk j , 0 ( j , k), according to the temperature gap between
the vertical walls.

md
1 (m−1) md

2 (m−1)
∆T (◦C) Crk j = 0 Crk j , 0 Crk j = 0 Crk j , 0

1 0.1753 0.1806 −0.0895 −0.1936
2 0.3302 0.3360 −0.2268 −0.3614
3 0.4125 0.4196 −0.3343 −0.4525
4 0.4587 0.4660 −0.4085 −0.5035
5 0.4865 0.4934 −0.4587 −0.5338
10 0.5352 0.5394 −0.5570 −0.5849
15 0.5465 0.5495 −0.5817 −0.5962
20 0.5507 0.5532 −0.5911 −0.6003
25 0.5527 0.5550 −0.5956 −0.6023
30 0.5537 0.5559 −0.5981 −0.6034

FIG. 2. Variation of the mass fraction gradient of the two components nC12
(1) and THN (2) for Le1= 516.9, Le2= 304.2, ψ1= 0.256, ψ2= 0.144 in
the two cases: Cr12= 0,Cr21= 0, and Cr12=−0.013,Cr21=−0.704 (real
blend).

parameter such as the cell thickness and the temperature
difference between the two vertical walls. Observation of
Figure 3 reveals that the separation of the components 1 and
2 is enhanced when the cell’s thickness is reduced and the
temperature difference is greater.

B. Assuming the forgotten effect hypothesis

In 1939, Furry, Jones, and Onsager22 (FJO) established
the equations of the balance sheet to describe the thermal
gravitational diffusion process for a binary mixture of gas
confined in a differential heated, vertical rectangular cavity.
However, in this work, they ignored the role of the mass

FIG. 3. Dependence of the mass fraction gradient on the temperature dif-
ference ∆T and the cell thickness for (a) n-dodecane (md

nC12
(x,∆T )) and

(b) tetralin (md
THN (x,∆T )) for Le1= 516.9, Le2= 304.2, ψ1= 0.256,

ψ2= 0.144, Cr12=−0.013,Cr21=−0.704.



fraction in the body force term because the temperature field
settled in the enclosure faster than the mass fraction field
did. This hypothesis is often called “the forgotten effect.” The
Darcy-Boussinesq equation then becomes

dv
dx
= Ra

dT
dx

. (16)

By replacing this momentum equation in Eqs. (8), we
determine the mathematical expression for the vertical
velocity evolution, the mass fraction and the mass frac-
tion gradient of each of the mixture constituents. The

solutions are given by the following Eqs. (17) according
to Lewis number, Rayleigh number, and cross-diffusion
coefficients.

In order to evaluate the usefulness of the forgotten effect
hypothesis, we compared md

k
plotted using this hypothesis, and

md
k

in the general case. Figure 4 shows that, for ∆T ≤ 15 ◦C,
the forgotten effect hypothesis is not appropriate but, for
a temperature difference of more than 15 ◦C, it provides
calculations of good accuracy. In these conditions, we can
use this hypothesis and thus greatly simplify the analytical
calculations,

v(x) = 1
2

Ra (1 − 2 x), (17a)

Ck(x, y) = mk y + γkRa
(
− x3

6
+

x2

4
− 1

24

)
− ξk x +

1
2
(ξk − mk A), ∀k = 1,2, (17b)

mk =
10 Ra

�
Lek (Le j Ra)2 − 120 (Crk j ((1 − Cr jk) Le j + Lek) − Lek)�

(Lek Le j Ra2)2 + 120 [Ra2 (2 Crk j Cr jk Lek Le j + Le2
k
+ Le2

j) + 120 (1 − Crk jCr jk)2] . (17c)

For Crk j = 0, the mass fraction gradient according to the
Rayleigh number and the Lewis number of each component
are evaluated as follows:

mk =
10 Lek Ra

(Lek Ra)2 + 120
, ∀k = 1,2. (18)

Solving the problem by excluding the cross-
diagonal elements of the diffusion matrix simplifies the
analytical calculations hugely, and this is interesting because
we have seen that, for a high value of ∆T (i.e., ∆T
> 15 ◦C), there is practically no difference in the results
for the two mixture cases (Figure 2). Hence we can
give a more general form of the simplified mass fraction
gradient of each component of the ternary mixture, see
Equation (18).

FIG. 4. Variation of the horizontal mass fraction gradient of the two compo-
nents nC12 (1) and THN (2) through the temperature difference ∆T for Le1=

516.9, Le2= 304.2, ψ1= 0.256, ψ2= 0.144, Cr12=−0.013, and Cr21=

−0.704.

IV. NUMERICAL SIMULATION

The system of Eqs. (3) with the boundary conditions (4)
presented above was solved numerically by a finite element
method (Comsol Multiphysics industrial code). This modeled
problem uses structured meshes that are better suited to the
rectangular shape of the cell. The aspect ratio of the cell studied
was 15. The spatial resolution for this aspect ratio is 20 × 150
for low ∆T (i.e., 1 ≤ ∆T(◦C) ≤ 4) but should be 20 × 300 for
larger temperature differences to increase the accuracy. The
aim of this numerical simulation was to assess the influence of
the temperature difference ∆T (single control parameter) on
the vertical mass fraction gradient (i.e., the separation level).
Table II compares the values of mk determined by numerical
simulation with the theoretical values calculated by the two
different analytical methods.

The variation of the mass fraction gradient of n-dodecane
(nC12) and tetralin (THN) according to the temperature

TABLE II. Comparison of the mk for the three methods presented
previously.

md
1 (m−1) md

2 (m−1)
∆T (◦C) PFH FJO Numeric PFH FJO Numeric

1 0.181 0.226 0.181 −0.194 −0.117 −0.195
2 0.336 0.440 0.336 −0.361 −0.281 −0.365
3 0.420 0.516 0.420 −0.453 −0.391 −0.459
4 0.466 0.540 0.466 −0.504 −0.457 −0.508
5 0.493 0.548 0.494 −0.534 −0.498 −0.535
10 0.539 0.552 0.539 −0.585 −0.568 −0.586
15 0.550 0.551 0.550 −0.596 −0.584 −0.598
20 0.553 0.551 0.553 −0.600 −0.590 −0.602



FIG. 5. Dependence of the horizontal nC12 (1) and THN (2) mass frac-
tion gradients according to the temperature difference ∆T for Le1= 516.9,
Le2= 304.2, ψ1= 0.256, ψ2= 0.144, Cr12=−0.013, and Cr21=−0.704.

difference ∆T is plotted in Figure 5. Good similarity between
the theoretical results and the numerical simulation can be
observed whatever the Rayleigh number. This validates the
hypothesis of parallel flow and also confirms the Furry, Jones,
and Onsager hypothesis of neglecting the effect of the mass
fraction in the convection term generator in the momentum
equation. Figure 6 gives a qualitative representation of mass
fraction fields for n-dodecane 6(a) and tetralin 6(b). The
simulation was performed for optimal Rayleigh number
(Raopt = 0.017) and it can be observed that tetralin separated
more than n-dodecane, due to cross-diffusion effects. Cr21
was much higher than Cr12. The convective flow was multi-
cellular and it was not possible to achieve the separation of the
components. Figure 7 shows a representation of the isotherms
7(a) and streamlines 7(b). The monocellular nature of the
convective flow is clearly visible. This type of flow favors the
separation of a complex mixture.

FIG. 6. Evolution of the mass fraction of components n-dodecane
(Cd

nC12
(x, y)) (a) and tetralin (Cd

THN (x, y)) (b), ε = 0.25, A= 15, ∆T
= 15 ◦C and all other parameters are kept constants.

FIG. 7. Isotherms (a) and streamlines (b) evolution in the enclosure;
ε = 0.25, A= 15, ∆T = 15 ◦C and all other parameters are kept constants.

V. EXPERIMENTAL COMPARISON

Work by Costesèque and Loubet,23 which was mainly
experimental, showed the variation of mass fractions for the
constituents of a ternary mixture of hydrocarbons undergoing
thermal gravitational diffusion in porous packed columns. The
hydrocarbons chosen: n-dodecane (nC12), isobutylbenzene
(IBB), and tetralin (THN) were a mixture of qualitatively
modeled oils of an oil-field in the North Sea. The mass fraction
of each component was measured according to the height in
the porous column under identical thermal and dimensional
conditions and after the time necessary to obtain a quasi-steady
state (approximately 50 days). To show possible segregations
in natural oils, there were five regularly spaced sampling ports
in the walls for measuring the mass fractions at different levels:
H = 0 (bottom), H = L/4, H = L/2, H = 3L/4, and H = L
(top). For each sample (with a volume of a few micro-liters)
the relative mass fraction of each component was measured
by gas chromatography. The chromatograph used is DI 200
type with a semi-polar column G. Williams Scientifics.

The column was 60 cm high and 0.45 cm thick. The
average temperature was 43.5 ◦C and the difference in real
temperature between the two walls (hot and cold) was 14 ◦C.
The porous lining saturated with ternary solution consisted
of pseudospherical zirconium oxide (ZrO2) grains. Hence,
the cell porosity was about 0.4. This affected the diffusion
time of the mixture, and therefore the time to reach the
steady state. The intrinsic permeability of the porous medium
was 1.1 × 10−10 m2 and the experimental Rayleigh number
was thus estimated at 0.19. To validate our whole study
(analytical solution and numerical simulation), the results are
compared with experimentally measured values in Figure 8.
There is very good agreement among the solutions obtained
numerically, analytically following the two approaches by
the parallel flow approximation and the FJO hypothesis, and
experimentally.



FIG. 8. Evolution of the mass fraction of the two components Cd
nC12

(y) (a)

and Cd
THN (y) (b) along the thermal gravitational column for Le1= 516.9,

Le2= 304.2, ψ1= 0.256, ψ2= 0.144, Cr12=−0.013, and Cr21=−0.704.

VI. CONCLUSION

This study makes a contribution to the problem of
separation of ternary mixture components by thermal gravita-
tional diffusion. The problem of thermosolutal convection
in a vertical porous cavity saturated by the DCMIX1
ternary mixture was studied. The thermal and geometrical
configurations chosen led to the existence of a mono-cellular
flow. This type of flow is ideal, as it promotes the separation of
a complex fluid species. A theoretical solution was presented
following two different approaches and a numerical simulation
was performed to determine the evolution of the velocity, the
temperature, and the mass fractions within the cavity in
the steady state. To complete this study, the analytical and
numerical results were compared with experimental results
(Costesèque et al.23). Across a comparative study, the different
results showed very good agreement, which led to endorse
the outlined assumptions. Moreover, the mixture separation
in the case of a ternary with mass cross-diffusion equals zero
and for real fluids was compared analytically according to the

temperature difference. In both cases, the maximum separation
was the same. Ultimately, the work very strongly supports the
experimentally determined transport coefficients published
recently in J. Chem. Phys.9,21 In the light of all the problems
encountered with the measurement of transport coefficients of
ternary mixtures, this confirmation of experimental results by
a completely different technique is an essential outcome with
importance for other researchers.
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