OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

In-line flow-induced vibrations of a rotating cylinder

Bourguet, Rémi and Lo Jacono, David In-line flow-induced vibrations of a rotating cylinder. (2015) Journal of Fluid Mechanics, 781. 127-165. ISSN 0022-1120

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1017/jfm.2015.477


The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in the direction parallel to the current and subjected to a forced rotation about its axis, are investigated by means of two- and three-dimensional numerical simulations, at a Reynolds number equal to 100 based on the cylinder diameter and inflow velocity. The cylinder is found to oscillate up to a rotation rate (ratio between the cylinder surface and inflow velocities) close to 2 (first vibration region), then the body and the flow are steady until a rotation rate close to 2.7 where a second vibration region begins. Each vibration region is characterized by a specific regime of response. In the first region, the vibration amplitude follows a bell-shaped evolution as a function of the reduced velocity (inverse of the oscillator natural frequency). The maximum vibration amplitudes, even though considerably augmented by the rotation relative to the non-rotating body case, remain lower than 0.1 cylinder diameters. Due to their trends as functions of the reduced velocity and to the fact that they develop under a condition of wake-body synchronization or lock-in, the responses of the rotating cylinder in this region are comparable to the vortex-induced vibrations previously described in the absence of rotation. The symmetry breaking due to the rotation is shown to directly impact the structure displacement and fluid force frequency contents. In the second region, the vibration amplitude tends to increase unboundedly with the reduced velocity. It may become very large, higher than 2.5 diameters in the parameter space under study. Such structural oscillations resemble the galloping responses reported for non-axisymmetric bodies. They are accompanied by a dramatic amplification of the fluid forces compared to the non-vibrating cylinder case. It is shown that body oscillation and flow unsteadiness remain synchronized and that a variety of wake topologies may be encountered in this vibration region. The low-frequency, large-amplitude responses are associated with novel asymmetric multi-vortex patterns, combining a pair and a triplet or a quartet of vortices per cycle. The flow is found to undergo three-dimensional transition in the second vibration region, with a limited influence on the system behaviour. It appears that the transition occurs for a substantially lower rotation rate than for a rigidly mounted cylinder.

Item Type:Article
Additional Information:Thanks to Cambridge University Press. The definitive version is available at http://journals.cambridge.org The original PDF of the article can be found at Journal of Fluid Mechanics website : http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9957190
HAL Id:hal-01310722
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:03 May 2016 07:56

Repository Staff Only: item control page