OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle-particle restitution coefficient and particle–wall boundary conditions

Fede, Pascal and Simonin, Olivier and Ingram, Andrew 3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle-particle restitution coefficient and particle–wall boundary conditions. (2016) Chemical Engineering Science, 142. 215-235. ISSN 0009-2509

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Official URL: http://dx.doi.org/10.1016/j.ces.2015.11.016

Abstract

3D numerical simulations of dense pressurized fluidized bed are presented. The numerical prediction of the mean vertical solid velocity are compared with experimental data obtained from Positron Emission Particle Tracking. The results show that in the core of the reactor the numerical simulations are in accordance with the experimental data. The time-averaged particle velocity field exhibits a large-scale toroidal (donut shape) circulation loop. Two families of boundary conditions for the solid phase are used: rough wall boundary conditions (Johnson and Jackson, 1987 and No-slip) and smooth wall boundary conditions (Sakiz and Simonin, 1999 and Free-slip). Rough wall boundary conditions may lead to larger values of bed height with flat smooth wall boundary conditions and are in better agreement with the experimental data in the near-wall region. No-slip or Johnson and Jackson׳s wall boundary conditions, with sufficiently large value of the specularity coefficient (ϕ≥0.1)(ϕ≥0.1), lead to two counter rotating macroscopic toroidal loops whereas with smooth wall boundary conditions only one large macroscopic loop is observed. The effect of the particle-particle restitution coefficient on the dynamic behaviour of fluidized bed is analysed. Decreasing the restitution coefficient tends to increase the formation of bubbles and, consequently, to reduce the bed expansion.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Chemical Engineering Science website : http://www.sciencedirect.com/science/article/pii/S0009250915007332
HAL Id:hal-01311516
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > University of Birmingham (UNITED KINGDOM)
Laboratory name:
Statistics:download
Deposited On:04 May 2016 10:52

Repository Staff Only: item control page