OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

SiC coatings grown by liquid injection chemical vapor deposition using single source metal-organic precursors

Boisselier, Guilhaume and Maury, Francis and Schuster, Frédéric SiC coatings grown by liquid injection chemical vapor deposition using single source metal-organic precursors. (2013) Surface and Coatings Technology, 215. 152-160. ISSN 0257-8972

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1016/j.surfcoat.2012.10.070


SiC coatings have been grown by direct liquid injection of organosilanes in a hot-wall chemical vapor deposition reactor (DLICVD). 1,3-disilabutane (DSB) and polysilaethylene (PSE) were used as single-source precursors. Amorphous and stoichiometric SiC coatings were deposited under low pressure on various substrates in the temperature range of 923–1073 K. Thickness gradients due to the temperature profiles and the precursor depletion were observed along the reactor axis but the thickness uniformity could be improved as a function of the deposition conditions. Growth rates as high as 90 μm·h−1 were obtained using pure precursors. The injection of PSE solutions in toluene significantly reduces the deposition rate due to the decrease of the PSE mole fraction but allows a better control of the growth rates and the microstructure of coatings. They exhibit a smooth surface morphology and a very dense structure. The films grown using pure precursors exhibit an Si:C atomic ratio equal to 1:1 while those using toluene solutions are slightly C-rich (54 at.% C). The presence of solvent vapor in the CVD reactor becomes a source of carbon contamination at deposition temperatures equal to or higher than 1073 K. The influence of the growth conditions is discussed, in particular the presence of toluene vapor.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Surface and Coatings Technology website : http://dx.doi.org/10.1016/j.surfcoat.2012.10.070
HAL Id:hal-01218626
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:10 Jul 2015 08:08

Repository Staff Only: item control page