OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Characterisation of thermal barrier sensor coatings synthesised by sol–gel route

Pin, Lisa and Pilgrim, Christopher and Feist, Jörg and Le Maoult, Yannick and Ansart, Florence and Lours, Philippe Characterisation of thermal barrier sensor coatings synthesised by sol–gel route. (2013) Sensors and Actuators A: Physical, 199. 289-296. ISSN 0924-4247

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1016/j.sna.2013.03.022


Further improvements in the efficiency of gas turbines are recognised to come from increases in turbine entry temperatures. Accurate temperature measurements are crucial to achieve these increases whilst maintaining reliability and economic component life. The combination of phosphor thermometry and thermal barrier coating (TBC) technology has led to the development of functional temperature sensor coatings which have several advantages over conventional temperature measurement techniques. Developments in sol–gel processing indicate that this method could be used for the production, or particularly, the repair of TBCs in the future. This paper demonstrates, for the first time, that sol–gel processing can be used to make sensor TBCs. The optimum concentration of SmO1.5 was 2 wt.% in YSZ to achieve the brightest phosphorescence emission. Above this concentration the overall intensity of the emission reduces and the transitions from 4F3/2 were suppressed. Furthermore, a similar suppression of these transitions was observed when the product of the sol–gel was heat treated to 1100 ◦C. This was concluded to be due to a higher degree of crystallinity allowing a greater interaction between the dopant ions. The dependence of the phosphorescence spectrum on heat treatment temperature provides the first indication that YSZ produced through sol–gel could be used to detect historic temperatures. An evaluation of the subsurface measurement and temperature capabilities has shown that the phosphorescence can be detected from relatively thin layers, 20 µm, even under 50 µm of undoped YSZ coating. Although the temperature detection range, 400–700 ◦C, is too low for advanced TBCs the material could be used in low temperature regimes or for health monitoring purposes.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Sciencedirect website : http://www.sciencedirect.com/science/article/pii/S0924424713001398
HAL Id:hal-01169876
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Ecole nationale supérieure des Mines d'Albi-Carmaux - IMT Mines Albi (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE)
Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Other partners > Imperial College London (UNITED KINGDOM)
Laboratory name:
Office for Naval Research - Centre for Non- Destructive Evaluation - EPSRC
Deposited On:30 Jun 2015 11:56

Repository Staff Only: item control page