OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Hybridation d’algorithmes évolutionnaires et de méthodes d’intervalles pour l’optimisation de problèmes difficiles

Vanaret, Charlie. Hybridation d’algorithmes évolutionnaires et de méthodes d’intervalles pour l’optimisation de problèmes difficiles. PhD, Institut National Polytechnique de Toulouse, 2015

[img]
Preview
(Document in French)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00002966/

Abstract

L’optimisation globale fiable est dédiée à la recherche d’un minimum global en présence d’erreurs d’arrondis. Les seules approches fournissant une preuve numérique d’optimalité sont des méthodes d’intervalles qui partitionnent l’espace de recherche et éliminent les sous-espaces qui ne peuvent contenir de solution optimale. Ces méthodes exhaustives, appelées branch and bound par intervalles, sont étudiées depuis les années 60 et ont récemment intégré des techniques de réfutation et de contraction, issues des communautés d’analyse par intervalles et de programmation par contraintes. Il est d’une importance cruciale de calculer i) un encadrement précis de la fonction objectif et des contraintes sur un sous-domaine ; ii) une bonne approximation (un majorant) du minimum global. Les solveurs de pointe sont généralement des méthodes intégratives : ils invoquent sur chaque sous-domaine des algorithmes d’optimisation locale afin d’obtenir une bonne approximation du minimum global. Dans ce document, nous nous intéressons à un cadre coopératif combinant des méthodes d’intervalles et des algorithmes évolutionnaires. Ces derniers sont des algorithmes stochastiques faisant évoluer une population de solutions candidates (individus) dans l’espace de recherche de manière itérative, dans l’espoir de converger vers des solutions satisfaisantes. Les algorithmes évolutionnaires, dotés de mécanismes permettant de s’échapper des minima locaux, sont particulièrement adaptés à la résolution de problèmes difficiles pour lesquels les méthodes traditionnelles peinent à converger. Au sein de notre solveur coopératif Charibde, l’algorithme évolutionnaire et l’algorithme sur intervalles exécutés en parallèle échangent bornes, solutions et espace de recherche par passage de messages. Une stratégie couplant une heuristique d’exploration géométrique et un opérateur de réduction de domaine empêche la convergence prématurée de la population vers des minima locaux et évite à l’algorithme évolutionnaire d’explorer des sous-espaces sous-optimaux ou non réalisables. Une comparaison de Charibde avec des solveurs de pointe (GlobSol, IBBA, Ibex) sur une base de problèmes difficiles montre un gain de temps d’un ordre de grandeur. De nouveaux résultats optimaux sont fournis pour cinq problèmes multimodaux pour lesquels peu de solutions, même approchées, sont connues dans la littérature. Nous proposons une application aéronautique dans laquelle la résolution de conflits est modélisée par un problème d’optimisation sous contraintes universellement quantifiées, et résolue par des techniques d’intervalles spécifiques. Enfin, nous certifions l’optimalité de la meilleure solution connue pour le cluster de Lennard-Jones à cinq atomes, un problème ouvert en dynamique moléculaire.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Durand, Nicolas and Gotteland, Jean-Baptiste
Statistics:download
Deposited On:10 Apr 2015 21:58

Repository Staff Only: item control page