OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Sand-assisted fluidization of large cylindrical and spherical biomass particles: Experiments and simulation

Fotovat, Farzam and Ansart, Renaud and Hemati, Mehrdji and Simonin, Olivier and Chaouki, Jamal Sand-assisted fluidization of large cylindrical and spherical biomass particles: Experiments and simulation. (2015) Chemical Engineering Science, 126. 543-559. ISSN 0009-2509

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1016/j.ces.2014.12.022


In this study, bubbling fluidization of a sand fluidized bed with different biomass loadings are investigated by means of the experiments and numerical simulation. The radioactive particle tracking (RPT) technique is employed to explore the impact of the particle shape factor on the biomass distribution and velocity profiles when it is fluidized in a 152 mm diameter bed with a 228 mm static height. Using a pair of fiber optic sensors, the bubbling characteristics of these mixtures at the upper half of the dense bed are determined at superficial gas velocities ranging from U=0.2 m/s to U=1.0 m/s. The experimental results show that despite cycling with a similar frequency, spherical biomass particles rise faster and sink slower than the cylindrical biomass particles. Furthermore, bubbles are more prone to break in the presence of biomass particles with lower sphericity. In the separate series of experiments, the reliability of the “frozen bed” technique to quantify the axial distribution of biomass particles is assessed by the RPT results. Using NEPTUNE_CFD software, three-dimensional numerical simulations are carried out via an Eulerian n-fluid approach. Validation of the simulation results with the experiments demonstrates that, in general, simulation satisfactorily reproduces the key fluidization and mixing features of biomass particles such as the global and local time-average distribution and velocity profiles.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Chemical Engineering Science website : http://www.sciencedirect.com/science/article/pii/S0009250914007374
HAL Id:hal-01113107
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Other partners > Ecole Polytechnique de Montréal (CANADA)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Natural Science and Engineering Research Council (NSERC) - TOTAL American Services, Inc. industrial chair
Deposited On:04 Feb 2015 13:41

Repository Staff Only: item control page